Flexible Data Lake Architectures for Seamless Real-time Data and Machine Learning Integrations

This talk was born from some of our greatest victories won and worst losses suffered while designing and implementing data lakes, with a focus on real-time processing and machine learning pipeline integration. We will go through the various design problems spawned from the specific integrations and solutions we have used—from caching to avert the Slowly Changing Dimension problem through operational and analytical cluster separation to the fully-fledged MLOps process. We will showcase, using real examples, how those use cases are reflected in the data lake architecture, both when building from scratch and evolving an existing solution.For the data architect, this session will provide a greater understanding of available design patterns. To a data scientist, it will provide a better understanding of the soon-to-be working environment.

Topics Covered

Dremio Subsurface: Advanced Storage Solutions

Ready to Get Started? Here Are Some Resources to Help

Whitepaper Thumb


Harness Snowflake Data’s Full Potential with Dremio

read more
Whitepaper Thumb


Simplifying Data Mesh for Self-Service Analytics on an Open Data Lakehouse

read more
Whitepaper Thumb


Dremio Upgrade Testing Framework

read more
get started

Get Started Free

No time limit - totally free - just the way you like it.

Sign Up Now
demo on demand

See Dremio in Action

Not ready to get started today? See the platform in action.

Watch Demo
talk expert

Talk to an Expert

Not sure where to start? Get your questions answered fast.

Contact Us

Ready to Get Started?

Bring your users closer to the data with organization-wide self-service analytics and lakehouse flexibility, scalability, and performance at a fraction of the cost. Run Dremio anywhere with self-managed software or Dremio Cloud.