Root Cause Analysis for Your Data Lake

From null values and duplicate rows, to modeling errors and schema changes, data pipelines can break for millions of reasons. And once “data downtime” happens, we need to know what caused it so that we can fix it – fast.It’s one thing to talk about root cause analysis in concept, but what does it look like in practice? In this talk, we pull back the curtain on how some of the best data teams are tackling data downtime across their data lake by walking through how to root cause a real-life incident across three main channels: your code, your operational environment, and the data itself.

get started

Get Started Free

No time limit - totally free - just the way you like it.

Sign Up Now
demo on demand

See Dremio in Action

Not ready to get started today? See the platform in action.

Watch Demo
talk expert

Talk to an Expert

Not sure where to start? Get your questions answered fast.

Contact Us

Ready to Get Started?

Bring your users closer to the data with organization-wide self-service analytics and lakehouse flexibility, scalability, and performance at a fraction of the cost. Run Dremio anywhere with self-managed software or Dremio Cloud.