Data Observability for Data Lakes: The Next Frontier of Data Engineering

Ever had your CEO look at a report and say the numbers look way off? Has a customer ever called out incorrect data in one of your product dashboards? If this sounds familiar, data reliability should be the cornerstone of your data engineering strategy.This talk will introduce the concept of “data downtime”—periods of time when data is partial, erroneous, missing or otherwise inaccurate—and how to eliminate it in your data lake, as well as the rest of your data ecosystem. Data downtime is costly for organizations, yet is often addressed ad hoc. This session will discuss why data downtime matters to building a better data lake and tactics best-in-class organizations use to address it—including org structure, culture and technology.

Ready to Get Started? Here Are Some Resources to Help

Whitepaper Thumb


Simplifying Data Mesh for Self-Service Analytics on an Open Data Lakehouse

read more
Whitepaper Thumb


Dremio Upgrade Testing Framework

read more
Whitepaper Thumb


Operating Dremio Cloud Runbook

read more
get started

Get Started Free

No time limit - totally free - just the way you like it.

Sign Up Now
demo on demand

See Dremio in Action

Not ready to get started today? See the platform in action.

Watch Demo
talk expert

Talk to an Expert

Not sure where to start? Get your questions answered fast.

Contact Us

Ready to Get Started?

Bring your users closer to the data with organization-wide self-service analytics and lakehouse flexibility, scalability, and performance at a fraction of the cost. Run Dremio anywhere with self-managed software or Dremio Cloud.