Building an Efficient Data Pipeline for Data Intensive Workloads

Moving data through the pipeline in an efficient and predictable way is one of the most important aspects of modern data architecture, particularly when it comes to running data-intensive workloads such as IoT and machine learning in production. This talk breaks down the data pipeline and demonstrates how it can be improved with a modern transport mechanism that includes Apache Arrow Flight. This session details the architecture and key features of the Arrow Flight protocol and introduces an Arrow Flight Spark data source, showing how microservices can be built for and with Spark. Attendees will see a demo of a machine learning pipeline running in Spark with data microservices powered by Arrow Flight, highlighting how much faster and simpler the Flight interface makes this example pipeline.

Topics Covered

Apache Arrow Flight
Data Lake Engines
Dremio Subsurface for Apache Spark
Interfaces

Sign up for AI Ready Data content

Discover How Data Pipeline Accelerates AI and Analytics with Unified, AI-Ready Data Products

get started

Get Started Free

No time limit - totally free - just the way you like it.

Sign Up Now
demo on demand

See Dremio in Action

Not ready to get started today? See the platform in action.

Watch Demo
talk expert

Talk to an Expert

Not sure where to start? Get your questions answered fast.

Contact Us

Ready to Get Started?

Enable the business to accelerate AI and analytics with AI-ready data products – driven by unified data and autonomous performance.