
Dremio’s
Well-Architected
Framework
A Guide for Best Practices for
Optimized Performance & Reliability

FOR DREMIO SOFTWARE

2The Dremio Well Architected Framework |

Dremio’s Well-Architected Framework helps design and operate solutions
with Dremio Software, providing insights from customer experiences.
The framework is composed of pillars that provide design principles and
concrete best practices that are based on those principles.

This document is a summary version of Dremio’s Well-Architected
Framework, designed to provide a concise overview of these essential
principles and best practices. It encapsulates key insights from the
lessons learned over time, having helped hundreds of customers achieve
success with Dremio.

The framework follows five common cloud provider pillars (AWS,
Microsoft, Google) and includes a sixth pillar specific to Dremio:

For a more comprehensive exploration of each pillar, along with in-depth
examples and detailed guidance, the full Well-Architected Framework
document can be found online in Dremio Documentation. This summary
serves as a practical reference to quickly grasp the core concepts and
start implementing best practices in your Dremio deployments.

Security

Performance Efficiency

Cost Optimization

Reliability

Operational Excellence

Self-service Semantic Layer

1.

2.

3.

4.

5.

6.

Dremio’s Well-Architected Framework
A Guide for Best Practices for Optimized Performance & Reliability

https://docs.dremio.com/current/help-support/lakehouse-arch/

The Dremio Well Architected Framework | 3

Dremio’s Security pillar is essential to ensuring that your data is secured properly when using Dremio to query
your data lakehouse. The security components are especially important to architect and design your data
platform. After your workloads are in production, you should review your security components on a regular
basis to ensure compliance and eliminate threats.

Dremio is a powerful platform that can process large amounts of data. To get the best performance out of
your Dremio environment, you should follow these design principles and implementation best practices.

When optimizing Dremio clusters for performance, several factors should be considered. Queries submitted
to Dremio must be planned by the coordinator before being routed for execution. There is always one master
coordinator and, optionally, additional scale-out coordinators that assist with planning JDBC/ODBC queries.
The coordinator generates a query plan that can be used to route the query to one of the engines that are
part of the cluster.

Some queries can be well-written, and some can consume inordinately high resources from the start.
Those queries can be rewritten and optimized on their own without regard to the larger cluster.

Beyond individual queries, we look at the execution environment of executor nodes. Those nodes have
individual constraints of memory and CPU. Executors in Dremio are also part of an engine that groups
executors together to process queries in parallel across multiple machines. The size of the engine that
a query runs on can affect its performance and ability to handle additional queries.

CORE PRINCIPLES BEST PRACTICES

•	 Leverage Industry-standard Identity
Providers and Authorization Systems:
Integrate with leading providers (e.g.,
Azure AD, OpenID, Okta) using multi-factor
authentication and SSO.

•	 Design for Least Privilege Access to
Objects: Ensure self-service access is
granted only to necessary data.

•	 Protect Access Credentials: Use identity
providers to avoid sharing passwords.
Secure LDAP integration with
CA-signed certificates.

•	 Leverage Role-Based Access Controls:
Manage access with roles instead of
individual user privileges to protect data
integrity and simplify architecture.

Security

Performance Efficiency

Dimensions of Performance Optimization​

PILLAR 1/6

PILLAR 2/6

The Dremio Well Architected Framework | 4

CORE PRINCIPLES

•	 Perform Regular Maintenance: Regularly
maintain clusters for optimal performance.

•	 Scale-out Coordinators: Add secondary
coordinators for planning high-volume queries.

•	 Optimize for Efficiency: Optimize semantic
layer and queries before scaling.

•	 Optimize Engines: Use multiple engines for
workload isolation and query buffering.

LEVERAGE REFLECTIONS TO IMPROVE PERFORMANCE

•	 Iterative Development: Build use cases in
Dremio’s semantic layer iteratively, without
Reflections initially, to identify and analyze
slow queries for performance improvement.

•	 Optimizing with Reflections: Apply raw
Reflections on Views with joins or large
datasets (e.g., JSON/CSV) to leverage Apache
Iceberg materialization for faster query
execution and better performance.

•	 Offloading Heavy Queries: Use raw
Reflections to offload analytical queries
from operational data stores, reducing
the load on OLTP databases and
enhancing query performance.

•	 Joining On-Premises and Cloud Data:
Implement raw Reflections for joining
on-premises data with cloud data to
mitigate latency issues and improve
query performance.

BEST PRACTICES

•	 Clean the KV Store: Regularly clean to
prevent metadata fragmentation and
improve performance.

•	 Right-size Scale-out Coordinators: Add
coordinators based on query volume to
improve query planning concurrency and
reduce wait times.

•	 Design Semantic Layer for Workload
Performance: Use data reflections for
query optimization and performance.

•	 Improve Query Performance:
Analyze query history and profiles to
identify and resolve bottlenecks.

•	 Rebalance Workload Management Rules:
Adjust query cost thresholds to balance
query distribution.

•	 Right-size Engines and Executors: Adjust
the number of executors in an engine
either manually or via Dremio’s auto-scaling
feature,, or add new engines based on
workload to avoid saturation.

Dedicated Metadata Refresh Engine: Implementing a dedicated metadata refresh engine in your
Dremio cluster isolates metadata refresh activities from other workloads, ensuring business-critical
tasks are not impacted and that metadata refreshes complete efficiently and on time.

Add a dedicated engine to isolate metadata refresh workloads from all business-critical workloads

Optimize Metadata Refresh Performance

The Dremio Well Architected Framework | 5

While getting the best performance possible with Dremio is important, it is also important to optimize your
costs associated with managing the Dremio platform.

The reliability pillar focuses on ensuring your system remains operational and can be quickly and efficiently
restored in the event of unexpected downtime.

CORE PRINCIPLES

CORE PRINCIPLES

BEST PRACTICES

BEST PRACTICES

•	 Minimize Running Executor Nodes: Scale
nodes to match current load and meet
service level objectives.

•	 Dynamically Scale Executor Nodes Up
and Down: Use scale-up and scale-down
features based on load.

•	 Eliminate Unnecessary Data Processing:
Avoid unnecessary reflections and
metadata processing to optimize costs.

•	 Set Workload Management Queue
Settings : Protect the system from
overload by configuring queues.

•	 Ensure Regular Backups Can Be Restored:
Regularly run and test backups.

•	 Monitor and Measure Platform Activity:
Regularly monitor and measure activity to
ensure reliability.

•	 Size Engines to Minimum Nodes Required:
Use scripts to scale nodes during low
usage periods.

•	 Remove Unused Reflections: Identify
and remove unused reflections to free
up resources.

•	 Optimize Metadata Refresh Frequency:
Adjust refresh frequencies to match data
update schedules, avoiding unnecessary
compute resource usage.

•	 Initialize Workload Management Settings:
Set queue memory limits to regulate
memory-intensive queries.

•	 Back Up Dremio: Regularly back up the KV
store and critical configuration files.

•	 Test Restoring Dremio from a Backup:
Ensure backups can be reliably restored.

•	 Monitor Dremio Cluster Health: Use JMX
and third-party tools to monitor metrics and
set alerts for critical thresholds.

Cost Optimization

Reliability

PILLAR 3/6

PILLAR 4/6

The Dremio Well Architected Framework | 6

Following a regular schedule of maintenance tasks is key to keeping your Dremio cluster operating at peak
performance and efficiency. This pillar provides details about the tasks that should be periodically completed
to maintain an operationally healthy Dremio cluster.

Operational Excellence
PILLAR 5/6

CORE PRINCIPLES

•	 Regularly Evaluate Cluster Resources:
Assess resource usage as workloads grow.

•	 Automate Promotion of Catalog Objects
from Lower Environments: Use REST APIs
for automation.

•	 Regularly Evaluate Query Performance:
Monitor and optimize high-cost queries.

•	 Regularly Monitor Dremio Live Metrics:
Collect and act on metrics to ensure
smooth operations.

BEST PRACTICES

•	 Optimize Workload Management Rules:
Regularly adjust query-cost thresholds
based on statistical analysis.

•	 Configure Engines: Isolate workloads
using separate engines for different
types of queries.

•	 Optimize Query Performance: Create
semantic layer views without reflections,
then add reflections strategically.

•	 Configure Persistent Logging in Kubernetes
Environments: Persist logs on disk for
longer availability.

•	 Monitor Dremio via JMX Metrics: Set up
monitoring solutions to proactively identify
and resolve issues.

The Dremio Well Architected Framework | 7

Dremio has a unique capability in its semantic layer, where the physical structure of the underlying data
storage is mapped to how the data is ultimately consumed ultimately via SQL queries. When the semantic
layer is optimally designed and maintained, the data is easy to discover, queries are easy to write, and
performance is optimized.

This summary serves as a practical reference to quickly grasp the core concepts
and start implementing best practices in your Dremio deployments.

For a more comprehensive exploration of each pillar, along with in-depth examples
and detailed guidance, the full Well-Architected Framework document can be found
online in Dremio Documentation.

Self-Service Semantic Layer
PILLAR 6/6

CORE PRINCIPLES

•	 Layer Views: Balance security, performance,
and usability by organizing views into
Preparation, Business, and Application layers.

•	 Annotate Datasets to Enhance Discovery and
Understanding: Tag and document datasets
for easier discovery and governance.

BEST PRACTICES

•	 Use the Preparation Layer for 1:1 Mapping
to Tables: Organize and expose necessary
datasets with column aliasing, type casting,
and data cleansing

•	 Use the Business Layer to Logically Join
Datasets: Create views that join datasets
and represent business entities, improving
analytics productivity.

•	 Use the Application Layer to Arrange
Datasets for Consumption: Arrange views
for data consumers, ensuring logical
separation for security and performance.

•	 Leverage Tags to Enhance Searchability:
Assign tags to enhance data discoverability.

•	 Create Wiki Content to Embellish Datasets:
Use wiki functionality to add descriptions
and context to datasets.

•	 Use Data Lineage to Understand
Relationships Between Objects: Trace
dataset lineage to understand data
combinations and structures.

Get the Complete Well-Architected Framework

https://docs.dremio.com/current/help-support/lakehouse-arch/semantic/

