
Dremio Software

Dremio Upgrade
Testing Framework

Introduction
This document provides a framework for testing new Dremio versions on non-production
environments for performance, stability, and regressions ahead of an upgrade of the
respective production cluster.

The performance testing aspect of this document may also be used to test and evaluate
cluster sizing and scaling, independent of a Dremio version upgrade.

This document is not intended to provide detailed steps on the upgrade process itself.

For detailed instructions on how to install, upgrade, or migrate a Dremio cluster on Kubernetes,
please refer to the Helm chart README, Dremio documentation, or the Migrate a Dremio
Standalone Cluster to Kubernetes whitepaper.

dremio.com

https://www.dremio.com/wp-content/uploads/2023/12/Migrate-a-Dremio-Standalone-Cluster-to-Kubernetes-1.pdf
https://www.dremio.com/wp-content/uploads/2023/12/Migrate-a-Dremio-Standalone-Cluster-to-Kubernetes-1.pdf

Dremio Upgrade Testing Framework

Assumptions

There are several assumptions to consider as you go through this document.

● The non-production and production environments are close or identical to each other
(with regard to tables and schemas).

● For accurate performance testing, the non-production and production environments
must also be close or identical to each other with regard to cluster size and available
resources.

● The non-production environment runs Dremio version 24.3.2 or higher, allowing us to
take advantage of the latest sys.jobs_recent system table.

● Historical queries from the production cluster are available (via queries.json files) or can
be collected by a cluster admin (e.g. via Dremio Diagnostic Collector).

Prerequisites
● Java 8�: Check if you have Java installed on your machine by running java --version

● Executable: Clone the dremio-stress repo and follow the steps to build the Java
executable.
→ run ./script/build to create a JAR file in your target folder

● Query Types: Running REST API and JDBC queries are supported out of the box, so no
additional drivers need to be installed.

● Queries: The dremio-stress tool can run queries based on a manually specified config
JSON file or auto-generated queries from (zipped) Dremio queries.json files.

Methodology
This Dremio upgrade testing framework contains two main components: Functional testing and
performance testing. The testing will cover re-running historical queries from a production
cluster, as well as load testing for high concurrency.
The testing framework leverages an open-source tool called dremio-stress, which specifies
and sends queries to Dremio. For more details on dremio-stress, please refer to its Github
repository.

Functional Testing �Re-running historical queries)
Re-running historical queries from an existing cluster will require downloading its queries.json
files, which will then act as the input for dremio-stress.
Downloading logs, like queries.json, can be done either manually or via Dremio’s official tool
Dremio Diagnostics Collector.

dremio.com 2

https://github.com/dremio/dremio-diagnostic-collector
https://github.com/rsvihladremio/dremio-stress
https://github.com/rsvihladremio/dremio-stress
https://github.com/rsvihladremio/dremio-stress
https://github.com/dremio/dremio-diagnostic-collector

Dremio Upgrade Testing Framework

The goal of functional testing is to ensure that all queries that previously ran on the production
cluster will be verified to perform on the new version.
As part of this re-run, we can verify that no significant performance regressions of individual
queries have occurred.

The main configuration parameters to consider are the following:
● In this query replay scenario, the query concurrency is expected to be either relatively

low or equal to one. This behavior is controlled by the command line flag -q /

--max-queries-in-flight set to a low number, like 1.
● In addition, the execution sequence of the input queries is assumed to be in sequence,

so it can be paused and resumed at any point. This behavior is controlled by the
command line flag -x / --execution-sequence set to “SEQUENTIAL”.

● When using queries.json files as the query input, we set -g / --generator-type to
“QUERIES_JSON”.

dremio.com 3

Dremio Upgrade Testing Framework

Performance Testing �Load or stress testing)
Stress testing can be seen as non-functional upgrade testing. After having successfully re-run
historical queries in a relatively low concurrency to ensure that they satisfy the functional
requirements, we can now focus on testing and benchmarking Dremio performance under load.
This stage can be run using the same historical queries as in the first stage. However, it is
advisable to prepare manually curated tests and queries to create a more standardized
benchmark. These benchmark queries can be specified using the stress.json input format,
which allows queries, query groups, parameters, and frequencies to be set (example
stress.json).

The main configuration parameters to consider are the following:
● In this stress test scenario, the query concurrency is expected to be high. Thus, we can

set -q / --max-queries-in-flight to its maximum of 32. To simulate even higher
workloads, we can run several dremio-stress client applications in parallel with 32
concurrent queries each.

● In this scenario, we are less likely to care about the execution sequence of the input
queries. Therefore, -x / --execution-sequence can be set to “RANDOM”.

● When using a stress.json file as the query input, we set -g / --generator-type to
“STRESS_JSON”.

dremio.com 4

https://github.com/rsvihladremio/dremio-stress/blob/main/example-stress.json
https://github.com/rsvihladremio/dremio-stress/blob/main/example-stress.json

Dremio Upgrade Testing Framework

Configuring and running dremio-stress

Step-by-step description

1. Follow the steps described in the README to build the Java executable on the client
machine used to run the queries.

2. If queries.json is being used as input, verify that the logic for skipping input queries is
adequate for your use case. The logic is defined in the skipQuery() method here.

a. Skipping of Dremio-internal queries (run by user $dremio$�
b. Skipping of queries that did not complete
c. Skipping of non-SQL query texts (e.g. “NA” from ODBC catalog calls)
d. Skipping of DDL/DML queries (e.g. CREATE, DROP, INSERT etc.)

3. Run the JAR using either REST or JDBC (this can be controlled or limited by the duration
parameter) while referencing the downloaded Dremio queries.json file or folder.
A list of CLI flags can be found here.

Example
If you are located in the dremio-stress root folder and have previously run the
./scripts/build command, you (as of v0.3.0� should be able to execute the following JAR�

java -jar ./target/dremio-stress.jar \

-g QUERIES_JSON \

--protocol JDBC \

-l "jdbc:arrow-flight-sql:<CONNECTION_URL>" \

-q 1 \

-x SEQUENTIAL \

./queries_json_folder

Please review the Dremio documentation for how to determine the <CONNECTION_URL> for
Arrow Flight JDBC.

dremio.com 5

https://github.com/rsvihladremio/dremio-stress#how-to-build-a-jar
https://github.com/rsvihladremio/dremio-stress/blob/main/src/main/java/com/dremio/support/diagnostics/stress/StressExec.java#L315-L346
https://github.com/rsvihladremio/dremio-stress/tree/main#flags
https://docs.dremio.com/current/sonar/client-applications/drivers/arrow-flight-sql-jdbc-driver/#connecting-to-databases

Dremio Upgrade Testing Framework

Analyzing the results
Assuming we are using Dremio version 24.3.2 or higher, we can leverage the system table
sys.jobs_recent to analyze query failures and query performance from within Dremio using
SQL.

Errors and cancellations
Assuming the environments to be tested are not completely identical, we should see some
errors highlighting missing views, objects, or columns. These can be excluded from our
analysis since they are unlikely to have been caused by the Dremio version upgrade.
Any remaining error messages should then be grouped and analyzed for potential causes.

Total summary of errors and cancellations
In the following examples, we analyze results by filtering on dremio-stress queries for the time
period of our testing using the predicate:
WHERE query like '--Replay of %' AND "submitted_ts" BETWEEN '2024-01-26 12:00:00'

AND '2024-01-26 12:20:00'.

This is a query for generating an overview of successful and failed dremio-stress queries:

SELECT status,

count(DISTINCT query) AS unique_queries_run,

count(*) AS total_queries_run

FROM sys.jobs_recent

WHERE query like '--Replay of %' AND "submitted_ts" BETWEEN '2024-01-26 12:00:00' AND

'2024-01-26 12:20:00'

GROUP BY status

Isolation of relevant error messages
Next, we collect all error messages of queries that failed in the run and try to qualify whether
they are related to software changes, which should be investigated further, or whether they
were caused by changes in the underlying data and schema, which can be ignored as part of

dremio.com 6

Dremio Upgrade Testing Framework

upgrade testing. In the former case, avenues of investigation might be to look at the detailed
job profiles of the queries or to consult Dremio’s logs for potential errors.

SELECT

error_msg,

status AS dremio_stress_outcome,

count(*)

FROM sys.jobs_recent

WHERE query like '--Replay of %' AND "submitted_ts" BETWEEN '2024-01-26 12:00:00' AND

'2024-01-26 12:20:00'

AND status = 'FAILED'

GROUP BY 1, 2

ORDER BY error_msg

In the previous screenshot, we can see several errors of tables, views, and columns not being
found in the underlying data, which suggest schema discrepancies compared to when (and
where) the query was originally run. To exclude these types of results from our analysis, we
can adjust the filter condition with logic as follows:
status = 'FAILED' AND NOT ((error_msg LIKE 'Column%' OR error_msg LIKE 'Object%')

AND error_msg LIKE '%not found%')

During analysis, we can keep iterating on the filter rules, until we isolate the query errors that
matter in the context of a software version update.

Canceled queries from dremio-stress run
We should also identify the queries that were canceled, to have them re-run:

SELECT DISTINCT

SUBSTRING(query FROM 50) AS original_query,

dremio.com 7

https://docs.dremio.com/current/admin/log-files/

Dremio Upgrade Testing Framework

status AS dremio_stress_outcome

FROM sys.jobs_recent

WHERE query like '--Replay of %' AND "submitted_ts" BETWEEN '2024-01-26 12:00:00' AND

'2024-01-26 12:20:00'

AND status = 'CANCELED'

ORDER BY original_query

Query cancellations may happen on the client side due to the volume of queries getting
replayed. Re-run those queries, either via dremio-stress or manually, to ensure full test
coverage.

dremio.com 8

Dremio Upgrade Testing Framework

Performance
Note: This following example assumes that performance benchmarks for both pre- and
post-upgrade workloads were run on the same Dremio cluster. This approach can simplify
analysis since we do not need to export data from one cluster to another. Instead, we can rely
on the sys.jobs_recent table to compare results directly inside Dremio.

● Based on the dremio-stress query metadata, which is added as a SQL text comment to
every query, we can match new queries with their original counterparts. If we observe
significant negative deviations in query times, we should investigate potential causes.

● Account for aspects such as metadata and reflection refreshes, which may slow down
the initial query immediately following the upgrade.

● Some performance divergences may be ignored, if the underlying queries are of time
criticality, such as background jobs.

The following example query joins query replays (“--Replay of xyz”) with the original jobs via
their job_id. We apply a filter that focuses on queries that

A. took more than twice as long in the dremio-stress replay than they did originally and
B. had a minimum running time of 1 second to ignore outliers (WHERE

ds.ds_run_duration_sec/j.original_run_duration_sec > 2.0 AND

j.original_run_duration_sec > 1.0).

WITH dremio_stress_queries AS (

SELECT

job_id AS ds_job_id,

SUBSTRING(query FROM 13 FOR 36) AS original_job_id,

query AS ds_query,

submitted_ts AS ds_submitted_ts,

(final_state_epoch_millis - attempt_started_epoch_millis)/1000.0 AS

ds_run_duration_sec

FROM sys.jobs_recent

WHERE query like '--Replay of %' AND "submitted_ts" BETWEEN '2024-01-26 12:00:00' AND

'2024-01-26 12:20:00'

), jobs_recent AS (

SELECT

job_id,

query,

submitted_ts,

(final_state_epoch_millis - attempt_started_epoch_millis)/1000.0 AS

original_run_duration_sec

FROM sys.jobs_recent

)

dremio.com 9

Dremio Upgrade Testing Framework

SELECT *

FROM dremio_stress_queries ds

JOIN jobs_recent j

ON ds.original_job_id = j.job_id

WHERE

ds.ds_run_duration_sec/j.original_run_duration_sec > 2.0 AND

j.original_run_duration_sec > 1.0

We can then search the Dremio jobs tab for the Job ID to analyze further. In this case, the
query was significantly faster on the older Dremio version because it used a reflection.

Conclusion
This paper described a framework, based on the open-source tool dremio-stress, which
allows Dremio administrators to test and benchmark both the functionality and performance of
their Dremio cluster before and after version upgrades. The test result analysis can be done in
SQL thanks to the Dremio-native system table sys.jobs_recent.

dremio.com 10

Dremio Upgrade Testing Framework

Appendix

Quick Recap: How to upgrade a Dremio cluster (on Kubernetes)
Dremio Software is most commonly deployed using Helm charts on Kubernetes. The Helm
chart repo can be found on GitHub.

For a detailed instruction on how to install or migrate a Dremio cluster on Kubernetes, please
refer to the Helm chart README, Dremio documentation, or the Migrate a Dremio Standalone
Cluster to Kubernetes whitepaper.

After running a Dremio backup (just to be safe), upgrading a Dremio Cluster on Kubernetes
follows three simple steps:

1. Pull and merge the latest version of Dremio’s official helm charts dremio-cloud-tools into
your cloned git repository. Please make sure to review any new changes, features and
fixes that have been introduced

2. Pull the latest Dremio version image from Dremio’s official Dockerhub repository and
upload it to your container registry.

3. In the values.yaml file of Dremio’s helm chart, update the image reference and version
number to the image from Step 2, for example:

image: dremio/dremio-ee

imageTag: 25.0.0

then run the helm upgrade command.

dremio.com 11

https://github.com/dremio/dremio-cloud-tools
https://github.com/dremio/dremio-cloud-tools/tree/master/charts/dremio_v2#readme
https://docs.dremio.com/current/get-started/kubernetes-quickstart
https://www.dremio.com/wp-content/uploads/2023/12/Migrate-a-Dremio-Standalone-Cluster-to-Kubernetes-1.pdf
https://www.dremio.com/wp-content/uploads/2023/12/Migrate-a-Dremio-Standalone-Cluster-to-Kubernetes-1.pdf
https://github.com/dremio/dremio-cloud-tools/commits/master
https://github.com/dremio/dremio-cloud-tools/commits/master
https://hub.docker.com/repository/docker/dremio/dremio-ee/general
https://github.com/dremio/dremio-cloud-tools/blob/master/charts/dremio_v2/values.yaml

