dremio

Evaluating
Coordinator Scaling

Introduction

This guide concentrates on the scale-out strategies in Dremio. It explains the significance of
Dremio's architecture, especially the roles of the master and scale-out coordinators.

The document primarily focuses on the horizontal scaling (scale-out) of coordinators in Dremio,
outlining the scenarios that necessitate the addition of scale-out coordinators to handle
increased system demands. It discusses critical factors such as disk performance, garbage
collection optimization, and memory management that influence the decision to scale out.

Practical guidance is provided for implementing scale-out coordinators in non-Kubernetes and
Kubernetes environments, making this guide valuable for enhancing Dremio's performance and
capacity through effective scaling strategies.

dremio.com



Evaluating Coordinator Scaling

Monitoring Prerequisites

Monitoring is an essential part of understanding the system and capacity limits and includes:

CPU utilization

Memory utilization

Network utilization and saturation
Disk utilization and saturation
Dremio Java heap utilization
Dremio direct memory utilization
Dremio’s command pool queue size

There are many monitoring tools available. If you already have one, use the one you have to
avoid additional efforts.

If you have no monitoring solution, Dremio recommends setting one up. For Kubernetes, you
can follow this quide.

Dremio Components & Architecture

Dremio is an open data lakehouse that provides self-service analytics, data warehouse
performance and functionality, and data lake flexibility across all your data. Below, you will see
a typical architecture for Dremio.

| }
Master Standby
EE— —» . b E— 4P ; o+
—57\ > Coordinator Coordinator
TJL A

w
—
Dist store
| |
:\ | |
N > 1" Scale-out
— . < Executors
Coordinators

A

|
|
\‘L Zookeeper

Yy

dremio.com 2


https://www.dremio.com/wp-content/uploads/2024/01/Dremio-Monitoring-in-Kubernetes.pdf

Evaluating Coordinator Scaling

The key components of this architecture are described below:

e Master Coordinator: The master coordinator in Dremio serves as a central component
that manages and coordinates tasks and operations within the Dremio cluster. This
crucial role involves overseeing cluster management, which includes the coordination of
Dremio executors and nodes. It is also responsible for query parsing and planning,
determining the most efficient execution strategy across the available resources.
Additionally, the master coordinator handles resource allocation, ensuring efficient
distribution of tasks among executors. Another critical function of the master
coordinator is metadata management, encompassing information about data sources,
datasets, and schema.

e Scale-out Coordinator: In Dremio, the scale-out coordinator is used explicitly for load
balancing during the planning phase of query execution. Its primary responsibility is
ensuring the planning workload is evenly distributed across the cluster. By balancing the
planning tasks, the scale-out coordinator prevents any single node from becoming
overloaded during this critical stage, thereby optimizing the overall efficiency and
performance of the cluster.

e Standby Coordinator (Failover Coordinator): In Dremio, a standby coordinator is a
component designed to enhance the resilience and high availability of the system. A
failover coordinator's primary function is to ensure operations continuity in case the
master coordinator encounters issues or fails. By having a standby coordinator, Dremio
enhances its system's robustness, ensuring that critical functions like query planning,
resource management, and cluster coordination continue uninterrupted, providing a
more reliable and stable data analytics and processing environment.

e Executor: In Dremio, an executor is a critical component that performs the actual data
processing for query execution. Executors handle tasks such as reading data,
performing calculations, aggregations, and joins, enabling Dremio to manage large-scale
data analytics. They operate within Dremio's distributed architecture, allowing for
parallel processing of queries across multiple executors, significantly enhancing query
performance, especially for large datasets. Additionally, executors contribute to the
scalability of a Dremio cluster.

This document focuses on scale-out coordinators.

dremio.com 3



Evaluating Coordinator Scaling

Horizontal and Vertical Scaling

What is Vertical Scaling?

Vertical scaling, also known as "scaling up," refers to increasing the capacity of a single server
or system by adding more resources. This typically involves upgrading the physical hardware,
such as adding more CPU cores, increasing memory (RAM), or expanding storage capacity.

Vertical scaling is commonly used to improve the performance of existing servers or systems
when more processing power, memory, or storage is needed. It's straightforward because it
doesn't involve adding more machines or instances. Instead, it focuses on making a single unit
more powerful.

However, there are limits to vertical scaling. Physical servers can only accommodate a certain
amount of hardware upgrades, and at some point, it becomes more cost-effective or
technically feasible to consider horizontal scaling. Additionally, vertical scaling often requires
downtime for installing new hardware, and it can represent a single point of failure since all
resources are concentrated in one machine.

What is Horizontal Scaling?

Due to the limitations of vertical scaling, horizontal scaling may be required. Horizontal scaling,
often referred to as "scaling out," is the process of increasing the capacity of a system by
adding more nodes or instances rather than upgrading the existing ones. Scaling out for the
Dremio coordinator involves adding more coordinator nodes to the Dremio cluster to distribute
the workload and improve the performance and reliability of the coordinator.

When the demand exceeds the capacity of the current setup, more servers or instances are
added to distribute the load. This can be done in data centers with physical servers or cloud
computing environments where virtual instances can be added dynamically.

However, horizontal scaling also has its challenges. It requires a system architecture that
supports the distribution of tasks across multiple nodes. This often involves load balancing and
efficiently partitioning tasks or data. Additionally, managing a larger number of nodes can be
more complex regarding maintenance and configuration.

When to Scale Vertically vs. When to Scale Horizontally?

A vertical scale-out should be done before considering a horizontal scale-out for the
coordinator. On the Dremio master coordinator node, the CPU can be increased to 96 cores,
and the memory can go up to 256 GB.

dremio.com 4



Evaluating Coordinator Scaling

After reaching the capacity limits of the master coordinator, a horizontal scale-out can be
considered. The master coordinator derives its name from being the single-access point to
Dremio’s central metadata KV store, which is located on a persistent disk. Therefore, before
adding scale-outs, it needs to be ensured that the disk capacity in terms of throughput and
IOPS is not reaching its limits. This can be verified using a monitoring solution (more details in
“When a Scale-Out Coordinator does not help”). If the disk is already saturated and the main
factor that slows down the query planning, a scale-out coordinator would not improve the
performance significantly because the scale-out coordinators need to communicate to the
master coordinator via the network, and the master coordinator provides the disk and stores all
the metadata which is required for the planning. The scale-out coordinators do not store any
metadata and state.

Furthermore, scale-out coordinators come with some caveats which should also be
considered:

e There will be a significant increase in network traffic between the master and scale-out
coordinators since all the metadata is stored on the master coordinator. This metadata
must be sent to the scale-out coordinator to plan the queries.

e Since all the additional metadata is exchanged via network gRPC calls, there will also be
a serialization and deserialization overhead, requiring additional CPU capacity.

This document's Coordinator Scale-Out Scenarios section covers more details about
horizontally scaling.

Dremio Scale-Out Architecture

When considering scaling out, we assume that the master coordinator has already been scaled
up to the limits described in the previous chapter. Dremio recommends starting with at least
two scale-out coordinators; in the case where scaling out becomes necessary, then we should
avoid any user traffic like HTTP or ODBC workloads hitting the master coordinator anymore.
The scale-out coordinators become fully responsible for managing end-user and application
connections. The master coordinator is responsible for serving requests from the scale-out
coordinators, and it also does metadata refreshes and manages reflection refreshes.

Therefore, the minimum number of scale-out coordinators should be two to achieve at least
doubling coordinator request capacity. The graphic below shows that the load balancer should
only forward the traffic to the scale-out coordinators. It should not forward any traffic to the
master coordinator. The disk of the master coordinator node needs to be highly performant. If
the master coordinator disk gets saturated, the performance will drop across all scale-out
coordinators. This architecture ensures the best performance when using scale-out
coordinators.

dremio.com 5



Evaluating Coordinator Scaling

ﬁﬁh Load Balancer
HTTP, ODBC, Arrow Flight

Dremio
Scale-out Coordinator 2

pr—

Dremio
Scale-out Coordinator 1

~

Dremio
Master Coordinator

\ gRPC Calls

Orchestrates execution

]
=
L]
O
o
o

far queries
for queries

Metastore / KVstore disk

Orchestrates exe cution

J

Orchestrates execution
for metadata refreshes
and reflection jobs

Dremio Executors

Verify Before Adding Scale-Out Coordinators

A couple of things should be verified and optimized before considering a scale-out of the
coordinators.

Slow Disks

We must ensure the master coordinator disk is performant enough to serve all requests. A
scale-out coordinator with a slow disk will also not materially improve the query planning
performance. Coordinator disk metrics that need to be monitored are:

e Disk utilization: Increase the capacity if the disk utilization exceeds 70%.

dremio.com 6



Evaluating Coordinator Scaling

e Disk saturation / Queue Depth: Disk queue depth refers to the number of input/output
operations waiting to be processed by the disk at any given time. A value up to 4 is
acceptable.

e |/O Wait: I/O wait is a metric representing the time a system's CPU is idle while waiting
for input/output operations to complete, typically indicating a bottleneck in data access
or disk performance. The desired value is close to zero, but improving the disk
performance can be considered when the disk regularly hits a value above 20 to 40%.

If you hit any of the abovementioned thresholds, we should add more IOPS and bandwidth to
the provisioned disk. Often, all three issues appear together. For some cloud vendors, both the
type of disk and its size determine the available amount of IOPS (e.g. for Azure
“managed-premium” disks between 32 GiB and 1 TiB, IOPS scale linearly with the disk size).

Below are some examples of the Dremio Grafana dashboard (see Monitoring Prerequisites).

This is an example of high disk utilization above 70%:

Disk 10 Utilisation

12:40 12:45 12:50 12:55 13:00 13:05

The disk saturation is at 20000%, which represents a value of 200 and much higher than the
expected maximum of 4:

dremio.com 7



Evaluating Coordinator Scaling

Disk |10 Saturation

20000%

15000%

= 10.240.0.10:9100 - sdd
10000%

L
5000%

0%
12:40 12:45 12:50 12:55 13:00 13:05

Furthermore, we can see a lot of 10 wait, higher than 20% to 40%. The desired goal is that all
CPU capacity can be used for processing instead of needing to wait on the disk:

10 Wait in %

Mame
== 10.240.0.10:9100

12:45 12:50 155 13:00 13:05

Optimize Garbage Collection Settings
Ensure that you already implemented these optimal garbage collection settings.

An optimal garbage collection is essential to reduce garbage collection pauses and to avoid
reaching the maximum heap capacity.

Sources of Out-Of-Memory Exceptions

If you plan to scale out because of seeing out-of-memory exceptions in your job profiles,
please ensure that the errors occurred on the coordinator, typically during the query planning

dremio.com 8


https://support.dremio.com/hc/en-us/articles/7649417414555

Evaluating Coordinator Scaling

stage. A scale-out does not help with out-of-memory errors that originated during query
execution on the executor nodes.

This is an example of a job profile error when heap memory was too low on the coordinator
node:

Query and Planning

Query Visualized Plan  Planning  Acceleration  Error

Query canceled - out of memory, check the gquery profile for details

Failure node: dremio-master-0.dremio-cluster-pod.dremio.sve.cluster.local: 31010
Error ID: b9338c%e-6291-4b5a-866a-eb0c3ae31494d

Werbose:
PLAN ERROR: Query canceled - out of memory, check the query profile for details

Query cancelled by coordinator heap monitor

_'———-_________—_______-

{org.apache.calcite.runtime.CalciteException) Statement preparation aborted
sun.reflect.NativeConstructordccessorImpl.newInstance@():-2
sun.reflect.NativeConstructorAccessorImpl.newInstance() 62
sun.reflect.DelegatingConstructorAccessorImpl.newInstance():145
java.lang.reflect.Constructor.newInstance() 423
org.apache.calcite.runtime.Resources$ExInstiWithCause.ex() 1463

org.apache.calcite.runtime.ResourcesiExInst.ex():5372

Coordinator Scale-Out Scenarios

The following scenarios describe when scaling out should be considered. Please carefully
review the use cases and keep in mind that scale-out coordinators are not free; they always
come with associated costs:

Additional nodes and capacity are required
Increased network utilization and latencies

e Serialization and deserialization overhead on the master and scale-out coordinators to
exchange data

dremio.com 9



Evaluating Coordinator Scaling

Increase the Capacity for Query Planning

After scaling vertically to the maximum master coordinator node size (96 cores, 256 GB
memory), it might be possible that you still hit the node capacity limits for the query planning.
Symptoms that you hit the node capacity limits are:

e High planning times (regularly > 10 seconds or any planner timeouts can be observed in
job profiles and queries.json logs)

e High command pool wait times for queries (> 1 second, can be observed in job profiles

and queries.json logs)

Command pool queue on the coordinator fills up (Prometheus metric)

Query planner out-of-memory errors causing coordinator restarts or failures

Long garbage collection pauses (> 1 second, can be observed in GC logs)

Consistently high CPU utilization (Regularly > 70%, can be observed via monitoring)

High Java heap memory utilization (Regularly > 70%, can be observed via monitoring)

For more details, see the explanations below.

Increased Planning Times

Go to the jobs overview and select a jobs profile. Then click on “Raw Profile”:

Raw Profile

12471b42-03e3-2543-3693-50c76¢a46200 (] = Overview saL & Visual Profile

If you see regularly that “State Durations - Planning” takes many seconds or even times out,
you should consider scaling out.

State Durations

Oms
62ms
55559ms
—
Oms

ms

ams

bms

87 853ms

Alternatively, planning times for all queries can be viewed and analyzed in Dremio’s
queries.json logs in the “planningTime” field. See here for further details.

dremio.com 10


https://docs.dremio.com/current/admin/log-files/#query-logs

Evaluating Coordinator Scaling

Command Pool Wait Time for Queries increases

Go to the jobs overview and select a jobs profile. Then click on “Raw Profile™:

Raw Profile

1a471b42-03e3-2543-3693-5bc 76246200 ([ = Overview sQL aa Visual Profile

You should consider scaling out if you regularly see “Command Pool Wait” exceeding one
second.

Job Summary

COMPLETED
dremioc-master-0.dremio-cluster-pod.default.svc.cluster.loca
25

1337ms

—

87 .989ms

Lo T e R e T e T s

Alternatively, command pool wait times for all queries can also be viewed and analyzed in
Dremio’s queries.json logs in the “poolWaitTime” field. See here for further details.

Command Pool Queue on the Coordinator Fills Up

Reviewing the Command Pool metrics requires a working monitoring solution consuming
Dremio’s JMX or Prometheus metrics.

The screenshot below is from a Grafana dashboard (link in Monitoring Prerequisites). The
desired value should always be close to zero:

Command Pool

== Command Pool Queue Size

01/26 00:00 01/26 06:00 01/26 12:00 01/26 18:00 01/27 00:00 01/27 06:00

dremio.com 1


https://docs.dremio.com/current/admin/log-files/#query-logs

Evaluating Coordinator Scaling

Regular Out-Of-Memory Errors Causing Coordinator Restarts or Failures

These errors require a review of the server.log files on the master coordinator node. If you see
OutOfMemoryExceptions, the memory is likely too low, and its upper threshold has been
exceeded:

Exception in thread "main" java.lang.OutOfMemoryError: unable to create native thread:
possibly out of memory or process/resource limits reached

at java.base/java.lang.Thread.start@(Native Method)

at java.base/java.lang.Thread.start(Thread.java:802)

at memory.ThreadsLimits.main(ThreadsLimits.java:15)

Another example:

2023-09-25 09:15:59,732 [laeebB31-7007-fd79-1755-172a9adaed00/0:foreman-planning] ERROR
c.d.s.commandpool.CommandWrapper - command
laeeb®31-7007-fd79-1755-172a9adaed400/0: foreman-planning failed
com.dremio.common.exceptions.UserException: Query canceled - out of memory, check the
query profile for details

at
com.dremio.common.exceptions.UserkException$Builder.build(UserException.java:885)

at
com.dremio.exec.planner.ExceptionUtils.throwUserException(ExceptionUtils.java:53)

at
com.dremio.exec.planner.DremioVolcanoPlanner.checkCancel(DremioVolcanoPlanner.java:162)

at
com.dremio.exec.planner.cost.DremioRelMetadataCache.put(DremioRelMetadataCache.java:109
)

at GeneratedMetadata_CollationHandler.collations(Unknown Source)

at
org.apache.calcite.rel.metadata.RelMetadataQuery.collations(RelMetadataQuery.java:567)

When checking the query job profile for an error, you might see this error message:

dremio.com 12



Evaluating Coordinator Scaling

Query and Planning

Query Visualized Plan  Planning  Acceleration  Error

Query canceled - out of memory, check the query profile for details

Failure node: dremio-master-0.dremio-cluster-pod.dremio.sve.cluster.local: 31010
Error ID: b9338c%e-6291-4b5a-866a-eb0c3ae31494d

Verbose:
PLAN ERROR: Query canceled - out of memory, check the query profile for details

Query cancelled by coordinator heap monitor

_'———-___________________-

{org.apache.calcite.runtime.CalciteException) Statement preparation aborted
sun.reflect.MativeConstructorAccessorImpl.newInstance@():-2
sun.reflect.NativeConstructorAccessorImpl.newInstance() 62
sun.reflect.DelegatingConstructorAccessorImpl.newInstance():145
java.lang.reflect.Constructor.newInstance() 423
org.apache.calcite.runtime.Resources$ExInstWithCause.ex() 1463

org.apache.calcite.runtime.ResourcesiExInst.ex():372

Note: Please review the message carefully because out-of-memory errors can also occur on
the executor nodes. In this case, a scale-out would not help.

Long Garbage Collection Pauses

It is required to set up garbage collection logging to validate long garbage collection pauses.

You can use the following command to validate the garbage collection pauses:

$ grep 'real=' /opt/dremio/data/log/gc*.log | grep -v 'real=e’

If you see large garbage collection pauses, it might indicate that the Java virtual machine hits
its heap limits and needs to run full garbage collections and pause everything:

/opt/dremio/data/log/gc-2024-01-03_12-26-19.1log: [Times: user=9.03 sys=0.04, real=8.46
secs]
/opt/dremio/data/log/gc-2024-01-03 12-26-19.1log: [Times: user=1.41 sys=0.05, real=1.26
secs]
/opt/dremio/data/log/gc-2024-01-03_12-26-19.1log: [Times: user=8.45 sys=0.05, real=8.06
secs]

dremio.com 13


https://support.dremio.com/hc/en-us/articles/7649417414555

Evaluating Coordinator Scaling

/opt/dremio/data/log/gc-2024-01-03_12-26-19.1og: [Times: user=1.46 sys=0.05, real=1.14
secs]
/opt/dremio/data/log/gc-2024-01-03 12-26-19.1log: [Times: user=9.59 sys=0.04, real=8.96
secs]

High CPU Utilization

Consider a scale-out if you regularly see that the CPU utilization exceeds 70% on the
coordinator node. This means there is a permanent pressure on this node.

CPU Utilisation

10.240.0.10:9100
90%

00:20 00:25 00:30

High Java Heap Memory Utilization

You should consider a scale-out coordinator if the heap often reaches the defined maximum

(-Xmx option in Java) and you have already scaled vertically. A maximum utilized heap comes
with long garbage collection pauses, unresponsiveness of the coordinator, and long planning
times.

Coordinator - Heap Used

16 GIB »ar- sagymar - sac f rar - rar a2

2024-01-3
. - - Max
126E____——T Max |

8 GiB

4 GIiB

0B

10:25:50 10:25:55 10:26:00 10:26:05 10:26:10 10:26:15 10:26:20 10:26:25 10:26:3(
Increase the Network Capacity when having many ODBC/JDBC connections

If you have many ODBC and JDBC connections, e.g. more than 50% of the entire workload
coming along with many parallel queries, consider adding a scale-out coordinator. Depending

dremio.com 14



Evaluating Coordinator Scaling

on the result set size, the result delivery to the client can take a long time, and during this time
the coordinator needs to keep the network connection open. The job also maintains many
connections to the executors, and the executors send the results to the coordinator. Based on
operating system configurations and limitations, there might be a limited number of network
and file handles. Additionally, network interfaces have a limited bandwidth (e.g. 10 Gbit/s),
which needs to handle the workload of receiving data from the executors and sending data to
the querying client.

Below is an example of Prometheus monitoring of the network bandwidth. In this example, the
network utilization is low and acceptable. Consider a scale-out when you hit 50% of the
available network bandwidth.

Receive Bandwidth

== dremio-master-0

13:30 14:00 14:30

Transmit Bandwidth

4 MiB/s
== dremio-master-0
3 MiB/s
2 MiB/s
1 MIB/s

0 Bfs
13:30 14:00 14:30

dremio.com 15



Evaluating Coordinator Scaling

Isolate the Planning Workload between the Coordinators to Isolate Load and
Failure Domains

Sometimes, there are use cases with queries that always have expensive query planning due
to the nature of the queries. This could be due to querying many tables and joining them.
Additionally, highly complex queries could be used.

For such queries, the planning can take many seconds, along with high CPU utilization. This
might be acceptable for some use cases, but others might have sub-second requirements. If
the planning queue (command pool) fills up because of the long planning time, the SLAs for the
other use case cannot be guaranteed any more. In this case, use a scale-out coordinator and
route all traffic for the queries that result in expensive planning to a dedicated scale-out
coordinator.

Scale-out Coordinator Implementation

Non-Kubernetes

In non-Kubernetes software installations, to enable a node to act as a scale-out coordinator
set the below configuration in dremio.conf file.

services: {
coordinator.enabled: true,
coordinator.master.enabled: false,
coordinator.web.enabled: false,
executor.enabled: false

Kubernetes

The Dremio deployment in Kubernetes is usually performed using Dremio’s official Helm Charts,
which can be found here.

All customizations for deployment are defined in the values.yml, located here.

By default, there will only be a master coordinator deployed. The field “coordinator->count”
defines the number of scale-out coordinators. The default of zero means that no scale-out
coordinator will be deployed. A value of two would deploy two scale-out coordinators plus the
master coordinator.

coordinator:

dremio.com 16


https://github.com/dremio/dremio-cloud-tools
https://github.com/dremio/dremio-cloud-tools/blob/master/charts/dremio_v2/values.yaml

Evaluating Coordinator Scaling

# CPU & Memory

# Memory allocated to each coordinator, expressed in MB.

# CPU allocated to each coordinator, expressed in CPU cores.
cpu: 70

memory: 229376

# This count is used for secondary coordinators only.
# The total number of coordinators will always be count + 1.
count: ©

Limitations

A few limitations exist when considering implementing scale-out coordinators in a Dremio
cluster.

e Dremio recommends a maximum of five scale-out coordinators for a deployment
e Dremio deployments on AWS Edition and Azure ARM do not support secondary
coordinator nodes.

Summary

In conclusion, this guide presents a thorough understanding of the scale-out process in
Dremio, focusing on the pivotal roles of master and scale-out coordinators in the platform's
architecture. It emphasizes the need for scale-out coordinators to handle increased system
demands and improve performance.

The guide outlines key considerations like disk performance and memory management that
influence scale-out decisions. It also provides practical steps for implementing scale-out
coordinators in non-Kubernetes and Kubernetes environments, thereby offering a valuable
resource for optimizing Dremio's scalability and efficiency.

dremio.com 17



