dremio

Query Performance
Analysis and
Improvement

Introduction

This document aims to help identify the reason for poor query performance and suggest ways
to improve it. The document assumes the reader is familiar with Dremio, either as an
administrator or a user, can run queries and navigate around Dremio’s Ul (specifically the “Jobs”

page).

As with any data platform, the amount of memory and the number of processors has the
highest impact on the response time of a query. Those resources together make up the Dremio
Cluster. Note: data storage is not part of the Dremio Cluster (the main difference between a
Data Warehouse and a Data Lakehouse). Of course, 10 performance is also critical to any
analytics platform.

Additionally, query performance is directly related to the complexity of the query
(aggregations, joins, etc), the concurrent number of users running queries on a Dremio cluster
and how the data is stored versus how it's scanned.

We use Dremio’s Query Profile report (referred to in the Docs as “Raw Profile”) to analyze the
query, identify where most of the time is spent, potential bottlenecks, and discuss ways to
improve the query.

dremio.com


https://docs.dremio.com/current/sonar/monitoring/raw-profile/

Query Performance Analysis and Improvement

Gather Dremio Cluster Information

It will be beneficial to have the following information handy. You can refer to these details while
analyzing the query in the Profile report.

Cluster Size No. of No. of Memory
Nodes Cores (GB)

Coordination nodes

Executor nodes

Workload Details Details

File format(s)

File size

Number of concurrent queries

Dremio Cluster Components

Here are the roles for each node type:

e Coordinator(s) - responsible for handling connections, serving the Ul and query
planning. There can be more than one coordinator node (scale-out coordinator).

e Executors - running the queries, joining, sorting and combining result sets, metadata and
reflection refresh

Query Profile

A query profile report is generated for each executed query. It contains query metrics that can
be used to analyze query performance. To view a Query Profile report, click on the Jobs icon
on the left side panel in the Dremio Ul, then click on the Job ID of the query you want to
analyze, then click on the Raw Profile link on the top right.

If you need to provide this information to Dremio Support, you generate the zip file using the
‘Download Profile’ button at the bottom of the page.

dremio.com 2



Query Performance Analysis and Improvement

1, kamran hussair| Start Tima: &1 v Status v ur, +1 w I

\sar v

Job ID User 4  Dataset Query Type Queue Start Time Duration SaQL

karmran,

UT (downioad)  High Cast s

101702023 1228024 D004 CREATL TASLE ©

azetDownioad”,

IcHETE-472

kamran hussaingdrami,. xi_trips_iceberg UT {run) Low Cost User G 1W25/2023, 06:09:59  00:00:03 delets fron ny_taxi_:

icebery whers passen

kamran hussaingarami WYC Trips JDBC Clant High Cast User 0, VN FIE0EE 2

SELECT 4 FROW “Business.Transpertaticn®. “MVC 7

kanmran s saing

En Wy _inips Ul {run) Lo

st User O

Do create tanle ©

- “kanran-dremin’.ng taxi_trip

kamran.fuzsain@anzml... D temee_travel UL {run)

o001 creats wds “Salutinon Architect”.KH-gp oloc

karnran. hussain@anami.. ED ny taxi trips_cebeng UL {run) Low CostUser 0. TO0/ZSIZDES, DB:0S:30 <15 SELECT {URRERT AP - 2033-E0E5 14

Harnran hussaingaeemi...

rips UI ipreview) UT Previews 10/27/2023, 09:£9:24 <15 SELFCT nested_f.

privan.hussgin@dreni... ny taxl tips cebeng. . UI {run) Low Cost User Q... 10/25/2023, 06:13:08 <15 select oo

ref 2200 ke

UT ({prer UT Praviews 1001712023, 12:21:59 <15 SELECT & FRCM nyctaai

HAR42E00 kamran.bus:

D Uravailable UT (run) 1025/2023, 06!

a7 <ls creats

gp o5 select & from ny_texi_trips_i

» @ 1ac43200~1E15-98082-3741- 619092251200 [J:J

P
&

Summary Submitted saL (I

Pe— d.vendor_id 45 vendar_id, nested_@.pickup_datetinme AS pickn

datetine, nestad_0_dropeff_dats a5 dropoff_date, nas

nested_B.p 1 _count A5 p r_| _distance_mi &5 trip_d _mi, nested_B.pickup_longitul

_latitude 4% pickup_latitude, nested_B.rats_cade &% rate_rade, nested B, staro_and_fwd_flag &5 store_and_fws_flag, nesti
dropoff_lengitade, nested_8.dropaff_latitude &5 dropoff_latitude, nested_s
&5 surchargs, nested_B.mta_tax A5 mta_tax, nested_B.tip_amount A5 ti
nosted_b,pickan_date a5 pickap_date, § a" A% "date”, join_weather_nyr.station A% 5
A5 awnd, @ather_nyc.prop &5 prep, join_weather_nyc,snaw AS snow, join_weather_nyc.sawd AS srw
join_weather_nyc.tempnin 45 tempnin

: FROM {

ted_d%

ri

unt, nested
Total amary: =

nasterd_B.picku

CPU Usea:

ayment_typs A5 payment_typn, nasted_b.
_amgunt, nested_B,tolls_amount AS

are_amount &5 fare,
Ls_anount, nested_8.tatal _w
an, join_weather_nyr.nane A%
jain_weather_nyc.tempmax &5 tem|

Query Type:
Start Tima

n_weather_nyc.

Duratian:

Querled Datasets

Total Execution Time

Panding

trips_plckupDate

Wrtadata Retriaval

Planring Acceleration

Queusd
. Feflections Used

Exacution Planning Riflection Nok Ussd

Starting

4» Mggregation Reflection
e Transporiaton L

Tid nat cavar g

Burmines (e

dremio.com 3



Query Performance Analysis and Improvement

Query Lifecycle - Raw Profile

From the time you hit run to the time the query returns data, it goes through several phases.
Let’s take a look at each phase of the query. This information is available in the Raw Profile.
Right below the SQL on the Query tab of the Raw Profile is the Job Summary section (see
screenshot below). This section of the Profile will show the times associated with each query
phase, which will help you determine what to focus on to improve the performance by reducing
that wait time. (start with the highest wait time).

Phase 1: Command pool wait - Dremio can run n-1 queries in parallel, where n is the number of
cores on the coordinator node. If more than n-1 queries are executed simultaneously, then
those queries go into the command pool. Command pool wait time should be at most 2-3
seconds.

Phase 2: Metadata retrieval - command parsing, dataset retrieval from source and KV store.
Metadata is stored on the executor nodes. (starting with v18).
A IMPORTANT
Metadata retrieval should be done before the query needs to be run. This step should be
avoided during query execution time.

Phase 3: Query planning time - query planning should not take more than 500ms to 1 sec.
A IMPORTANT
If you see a long planning time, it's directly related to the coordinator resources, query
complexity or the number of concurrent queries.

Phase 4: Queued - waiting for resources.
A IMPORTANT
If there is a lot of queueing, that would either mean that the concurrency is high or the
queries are running for a long time. This would imply that the Dremio cluster is not correctly
sized for the workload.

Phase 5: Execution planning - Dremio has the fully optimized plan at this point. Now, Dremio
splits the plan and assigns it to the executor nodes.

Phase 6: Starting - propagates fragments (units of work) to the executors.
A IMPORTANT
If this step takes more than a few seconds, the executors may be too busy with other work.
This would imply that the Dremio cluster is not correctly sized for the workload and you need
to add more executors.

dremio.com 4



Query Performance Analysis and Improvement

Phase 7: Running - waits for fragment completion
Completed, Failed, or Canceled

Below is an example screenshot of the Job Summary information:

Job Summary

COMPLETED
dremio-master-0.dremio-cluster-pod.default.svc.cluster.local
7

Oms

77,814ms

1

o O W =

State Durations

Oms
60ms
127ms
Oms
12ms
5ms

3ms
77,607ms

This query ran for over 77 seconds. The Total Query Time of 77 seconds consists of 60 ms of
Metadata Retrieval, 127 ms of Planning, and 77,607 ms of Running, etc. As with any query
tuning exercise, you must identify and address the state that takes the longest time.

The metadata retrieval, planning and queued times are within the expected range; however,
the Running time is unacceptable. Further investigation needs to be done to determine why
the query took 77 seconds in the Running state. This paper’s Optimization Concepts section
will cover some possible reasons for extended run times.

Please refer to the Reading Dremio Job Profiles paper to learn more about the information in
Dremio profiles and where to find it.

dremio.com 5


https://www.dremio.com/wp-content/uploads/2024/01/Reading-Dremio-Job-Profiles.pdf

Query Performance Analysis and Improvement

Common reasons for slow performance

Given the various states of query execution mentioned in the previous section, here we will briefly
examine some common reasons for slow performance for a few of those states.

If the Command Pool Wait is more than 1-2 seconds, then either there were too many queries initiated
at the same time (for the cores available on the coordinator), or the query planning is taking too long,
which is consuming the cores, due to the complexity of the query. Please review the resources
available on the Coordinator node(s) and take corrective actions. Dremio supports scale-out
coordinator nodes, which may be needed to reduce this wait.

Metadata Retrieval should not happen at query runtime (aka inline refresh). If the duration of this phase
is high, the metadata is either unavailable or possibly expired. Please review the configuration for the
Source and adjust it accordingly:

Click on the Datasets icon > right-click on the Source in question > Settings > Metadata tab on the left.
Optionally, review the Doc “Administration > Refreshing Metadata” to avoid inline metadata refresh.

Details of the Planning phase are in the Raw Profile > Planning tab:

Raw Profile b
Query and Planning

e Planring - Acpsieration

Corvert To Rel (4 rr)

Query  Visualized F

Validaticn (52 ms|

LogicalPraject [vendor_id=[38], pickup_datetime=[32], drepoff_date=[33], dropeff_datetine=[34], passenger_count=[35], trip distance_mi=[$6], pickup_longitude=[37], pilckup_latitude=[$E], rat
Logicalla dition=[=(31, $22}1]1, joinType=[fulll]l
Logica ject(vendor_id=[48], pickup_date=[$1], pickup datetime=[$2], dropoff_date=[$3], dropoff_datetime=[$4], passenger_count=[$5], trip distance_mi=[$a], pickup_longitude=[£7], pic
LogicalPreject(vendor_id=[$8], pickup_date=[$1], pickup_datetime=[$2], dropoff_date=[$3], dropeff_catetime=[34], passenger_count=[$5], trip_distance_ni=[$5], pickup_longitude=[s7], p
LogicalFiltericondition=[AND{==(%6, @), =<={%8, 368}1]1}
ExpansiorMode(path=[Freparation. trips])
1t PRI

21 Orad et iuandne AA=T€3T  ndsb

Anrac €31 mirbin datarima—l€3]  deanads daea— (401 drannts datarina— (€61 nzccanmar rauns—[€E]  +rin dictanra—ld71  micbun Tanastinas eml

One possible reason for high Planning time is too many reflections on the datasets in the query. The
planner has to analyze all the reflections, calculate the cost, compare the cost and choose the best
reflection. This can take significant time, sometimes more than running the query and fetching the
data. Scroll down in the Planning tab and look at the values of ‘Normalization’ and ‘ Logical Planning’
(see screenshot below). If these are high, more than 10-20 seconds, then it points to having too many
reflections. Please review how many reflections you have and if they are needed.

Starting with version 24.2, reflection hints are now available to control which reflections are considered
or excluded. You can consider hints to accelerate reflection selection.

dremio.com 6


https://docs.dremio.com/current/admin/metadata-caching/
https://docs.dremio.com/current/sonar/reflections/using-reflection-hints/#scope-of-reflection-hints

Query Performance Analysis and Improvement

Transitive Predicate Pullup (0 ms)

LogicalProject{vendar_id=($8], pickup_datetine=(32], dropoff date=[$3], dropoff_datetimes[54], passenger_count=I35], trip distance_mi=[$6], pickup_longitude=[$7], pickup_latitudes[s8], rat
Logicalloinicondition=[={$1, $22}1, jeinType=[fulll})
LogicalProject{vendor_id=($#], pickup_date=[31], pickup_datetine=|$2], dropoff_date=[$3], dropoff_datetime=[34], passenger_count=[$5], trip_distance_mi=[$6], pickup_longitude=[37], pic
LogicalFilter(condition= [AND(-=(56, @), <=($6, 368))])

SampleCrel
ScanCrel{table=(adlsv2.dremio. trips_pickupbate], snapshot=[2646471344806547503], columns=["vendor_id", 'pickup_date’, 'pickup_datetime’, "dropoff_date', 'dropoff_datetime’, pass
SampleCrel
ScanCrel{table=[pg.public.weather_nycl, columns=["station®, 'mname’, "date”, "awnd", “prcp’, “snow’, 'snwd’, "tempmax’, “tempmin'], splits=[1]}

Filter Constant Resolution Pushdown (0 ms)
Pre-Logical Filter Pushdown (0 ms)
Find Materasizations (0 ms)

Mormalization {27 mas)

Substitution (0 ms)

Logical Planning {11 ms}

ProjectRel(vendor_id=[s0], pickup_datetime=[s2], dropoff_date=[$31, dropoff_datetime=[$a], passenger_count=[$5], trip_distance_mi=[$6], pickup_lengitude=[$71, pickup_latitude=[$8]1, rate_co
Tninkellronditinns (=21, 2211 dninTvneslfullll

Next, you can go to the Acceleration tab and review the Reflection Outcome section.

As you can see in the example below, there are three reflections (one raw reflection and two aggregate
reflections), and none were selected - the query was not accelerated. The reason the reflection was not
selected is: ‘considered, not matched' In the Reflection Details section, you will find more information
about the reflection, why it may or may not have been selected, the age of the reflection, expiration
date, etc.

Raw Profile

Query and Planning

Query  Visualized Plan  Planning  Acceleration

Reflection Outcome

Query was NOT accelerated

= w_historical ("Solution Architect”.mikef)
= Raw Reflection (Type: raw, Refection Id: c52ab%fc-3711-4121-9dd4-0c292b1993H6): considered, not matched.
= NYC Trips (Business.Transportation)
= Aggregation Reflection (Type: agg, Refection |d: cBfa4900-54ca-456c-a651-44347904b1a6): considered, not matched.
= Aggregation Reflection_new (Type: agg, Refection Id: 643a5b53-0fbe-4192-a3c§-30b8519df215): considered, not matched.

Time To Find Reflections: 0 ms
Time To Canonicalize: 27 ms
Time To Match: 0 ms

Canonicalized User Query Alternatives

Reflection Details
Reflection Definition: Aggregation Reflection
Matched: 0, Chosen: 0, Match Latency: O ms

Reflection |d: c8fa4900-54ca-456¢-ab5f-443e7804b1a6, Materialization 1d: 845d6717-ffcd-4dad-98f5-01a2491ef06c
Expiration: 3022-09-16T14:43:48Z

Dataset: Business.Transportation."NYC Trips"
Age: 164 days 0 hours 5 minutes 36 seconds
Dimensions: pickup_date, pickup_datetime, store_and_fwd_flag, vendor_id}payment_type, dropoff_date, dropoff_datetime, rate_code,
Measures:

= dropoff_latitude ( COUNT, SUM, )

dremio.com 7



Query Performance Analysis and Improvement

Let’s briefly review a few of the steps of the Planning state:

1. Validate and Convert To Rel - Dremio looks at the physical and virtual datasets by pulling this
information into the planning phase. These should typically be in milliseconds and not the cause
for any slowness.

2. Logical Planning - reflection substitution, partition pruning, filter pushdown

3. Final Physical Plan (Optimized Plan) - Dremio determines how to divide the work into Phases (or
units of work).

Scroll further in the report to get to the Threads section.

Threads

Overview

“ Min Avg Max Min Avg Max
reas First Last First Last First- First- First- Wall- Wall- Wall- Min Avg Max Min Avg Max Last

Phase Weight |Reporting | Start Start End End run run run clock clock clock Sleep Sleep Sleep Blocked Blocked Blocked Update Prog
00-xx-xx 2 1/1 pP151s 0.151s 0.813s 0.813s 0.004s 0.004s 0.004s 0.662s 0.662s 0.662s 0.000s 0.000s 0.000s 0.653s 0.653s 0.653s 14:49:25 14x¢
01-Xx-Xx 2 8/8 p.151s 0.163s 0.810s 0822s 0.002s 0.003s 0.004s 0.657s 0.657s 0.659s 0.001s 0.008s 0.024s 0.607s 0.626s 0.638s 14:49:25 14
02-Xx-XX 1 8/8 p.151s 0.163s 0.715s 0822s 0.002s 0.006s 0.010s 0.560s 0.584s 0.659s 0.003s 0.005s 0.011s 0.002s 0.376s 05105 14:49:25 14x¢
03-xx-xx 2 1/1 p.163s 0.163s 0.725s 0.725s 0.003s 0.003s 0.003s 0562s 0.562s 0.562s 0.000s 0.000s 0.000s 0.494s 0.494s 0.494s 14:49:25 14«
04-Xx-Xx 1 8/8 D.152s 0.164s 0.708s 0.744s 0.005s 0.009s 0.019s 0.555s 0.562s 0.580s 0.003s 0.009s 0.021s 0.009s 0.462s 05498 14:49:25 14
05-Xx-XX 1 1/1 P153s 0.153s 0.708s 0.708s 0.003s 0.003s 0.003s 0.555s 0.555s 0.555s 0.001s 0.001s 0.001s 0.497s 0.497s 04975 14:49:25 14:x¢

|

Each Phase can have different degrees of parallelism - how this is derived is discussed in the next
section. The example above has 6 phases: 00, 01, ..., 05. Phases 00, 03 and 05 are single threaded.
Look at the ‘Thread Reporting’ column, which shows 1/1. Phases 01, 02, and 04 have eight threads each.

Note: Phase 00 is always single-threaded; this is the phase that sends the results back to the client.

dremio.com 8



Query Performance Analysis and Improvement

Degree of Parallelism

Based on the format of the data and the data source, the degree of parallelism in Dremio is determined
in slightly different ways.

Parquet, ORC (read-only) and AVRO file formats fall into Dremio’s unlimited splits flow, where the
metadata is stored in the distributed store. During the Planning phase, the coordinator cannot access
the number of splits, and partition pruning happens during the first part of query execution. In this case,
the degree of parallelism is determined during the Execution Planning phase. It is calculated as the
minimum of these two values:

e Number of cores on the executors (70% of executor cores for each query)
e Estimated number of rows. You can see each dataset's estimated number of rows in the Final
Planning section. (search for rowcount’)

For all other file and table formats and external sources, the metadata still resides in the Master
Coordinator's KVstore and pruning happens during the Planning phase. In this case, the degree of
parallelism is calculated as the minimum of these three values:

Number of splits to be scanned (in Final Physical plan)
Number of cores on the executors (70% of executor cores for each query)

e Estimated number of rows. You can see each dataset's estimated number of rows in the Final
Planning section. (search for ‘rowcount’)

Final Physical Transformation (8 ms)

{1.1867924750484336E7 rows, B8.277115391290028E7 cpu, 1.57334956673124409E7 i
{1.1083510067118714E7 rows, 8.277107547143194E7 cpu, 1.5733495667312449E7 i

+): rowcount
+) ! rowcount
10612

784414.6833656224, cumulative cost
784414.6833656224, cumulative cost

INTEGER +): rowcount = 784414.6833656224, cumulative cost = {8730266.017021846 rows, 7.022028365464531E7 cpu, 1.5733495667312449
10000002 memory}, id = -1678540615

iT runid, DOUBLE CAST): rowcount = 211388.17778794913, cumulative cost = {1691105.422303593 rows, 1.3518314133293128E7 cpu, 4227
commenttext, BIGINT runid, DOUBLE CAST): Fowcount = 211388.17778794913, cumulative cost = {1268329.0667276948 rows, 1.1827187572
3712'), ={%2, 'e452'}), =(32, '2715'), =(s2, '3798'}, =(%2, '2716'), =($2, '3B15'}), =(%2, '1696'), =($2, '1B97'), =(%2, '3807'),

1tid, VARCHAR(65536) originalsourcesystemidentifier, VARCHAR(65536) sourcesystemidentifier, DECIMAL(38, 9) spotbalanceusdeamount
IT runid, DOUBLE CAST): rowcount = 573026.5055776733, cumulative cost = {4584212.044621387 rows, 3.664515390672827E7 cpu, 1.14608

dremio.com 9



Query Performance Analysis and Improvement

Optimization Concepts

Optimization concept #1: Runtime Filtering

The remainder of this paper will focus on the Physical Plan. We're looking for optimization patterns that
will ensure efficient execution.

Final Physical Transformation (1 ms)

o0-2g0 Screen : rowlype = RecordlypelVARCHAR(65536) Fragment, BIGINT Records, VARCHAR(65536) Path, VARBINARY(65536) Metadata, INTEGER Partition, |

00-081 Project(Fragment=[$@], Records=[$1], Path=[$2], Metadata=[$3], Partition=[$4], FileSize=[$5], IcebergMetadata=[$6], fileschema=[$7], Par
00-02 WriterCommitter(final=[/opt/dremio/data/results/lac4320b-18f5-988a-37a1-679092251200]) : rowType = RecordType(VARCHAR(E5536) Fragment,
ae-83 UnionExchange : rowType = RecordType(VARCHAR(65536) Fragment, BIGINT Records, VARCHAR(65536) Path, VARBINARY{65536) Metadata, INTEGE!
01-01 Writer : rowType = RecordType(VARCHAR(65536) Fragment, BIGINT Records, VARCHAR(65536) Path, VARBINARY(65536) Metadata, INTEGER Par
a1-82 Project{vendor_id=[%$@8], pickup_datetime=[$1], dropoff_date=[$2], dropoff_datetime=[$3], passenger_count=[$4], trip_distance_mi=[:
01-83 Project(vendor_id=[$@], pickup_datetime=[$2], dropoff_date=[$3], dropoff_datetime=[$4], passenger_count=[$5], trip_distance_mi:
21-04 HashJoin{condition=[=(%1, $22)]1, joinType=[fulll) : rowType = RecordType(VARCHAR(65536) vendor_id, DATE pickup_date, TIMESTAl
21-86 Project(vendor_id=[50], pickup_date=[51], pickup_datetime=[$2], dropoff_date=[33], dropoff_datetime=[34], passenger_count=
al-es8 HashToRandomExchange(dist@=[[$1]1) : rowType = RecordType(VARCHAR(65536) vendor_id, DATE pickup_date, TIMESTAMP(3) picku
02-01 Project(vendor_id=[$@], pickup_date=[$1], pickup_datetime=[$2], dropoff_date=[$3], dropoff_datetime=[$4], passenger_co
22-82 Project(vendor_id=[$@], pickup_date=[$1], pickup_datetime=[$2]1, dropoff_date=[$3], dropoff_datetime=[$4], passenger_:
22-83 SelectionVectorRemover : rowType = RecordType(VARCHAR(65536) vendor_id, DATE pickup_date, TIMESTAMP(3) pickup_date
02-04 Filter(cendition=[AND{>=(%6, ®), ==($6, 36@))]) : rowType = RecordType(VARCHAR(65536) vendor_id, DATE pickup_dat
82-085 Limit{offset=[@:BIGINT], fetch=[1000@:BIGINT]) : rowType = RecordType(VARCHAR(65536) vendor_id, DATE pickup_da

. T3 TahleFunrtinnlealumne=["wandnr id’  “nickun data’ “nickon datetime’  dranoff date’  dronaff datetime’  n

1) NoTE

If your query does an inner or right outer join - your query should use runtime filtering.

Runtime filtering improves query performance by reducing the amount of data that will be
projected when joining fact and dimension tables. Dremio will quickly determine the join keys
from the dimension table and project only the matching data in the fact table, making this step
much faster. This is only applicable for inner joins or right outer joins.

Let’s now find out if the runtime filter was used (or not used). Click on the Profile tab > go to
the Planning tab > and search for ‘runtime’ (see highlighted row in the screenshot below).

Final Physical Transformation (108 ms)

21-05 HashAgg(group=[{e, 1, 2, 3, 4, 5, 6, 7, 8, 9, 1@, 11, 12, 13, 14, 15, 16, 17, 18, 19, 2@, 21, 22, 23, .
01-06 Project (TIME_INV_DESC=[$@], FACILITY_ID=[$1], CLNT_UCN=[%$2], CLNT_NM=[$3], RCV_PAYMENT_CCY=[$4], PAY.
a1-07 HashToRandomExchange(dist@=[[$@8]], dist1=[[%$1]], dist2=[[4$2]1], dist3=[[4$3]1]1, dist4=[[$4]1], dist5=I[
az-01 UnorderedMuxExchange : rowType = RecordType(VARCHAR(65536) TIME_INV_DESC, DECIMAL(28, @) FACILIT
83-01 Project(TIME_INV_DESC=[$@], FACILITY_ID=[$1], CLNT_UCN=[$2], CLNT_NM=[$3], RCV_PAYMENT_CCY=[$4.
03-02 Project (TIME_INV_DESC=[$60], FACILITY_ID=[$@], CLNT_UCN=[$62], CLNT_NM=[$61], RCV_PAYMENT_CC'
03-03 Project(FACILITY ID=[$0], CALCULATION_EXCEPTION=[$2], SOURCE_SYSTEM=[$3], RECALC_MTM_AMT=[:

04 HashJoin(condition=[=(%1, $66)]1, joinType=[inner], runtimeFilter=[[314-03 dira-: rowT
03-06 Project (FACILITY_ID=($8], TIME_INV_KEY®=[$1], CALCULATION_EXCEPTION=[$2], SOURCE_SYSTH
@3-07 SelectionVectorRemover : rowType = RecordType(DECIMAL(28, @) FACILITY_ID, VARCHAR(65!
f3-08 Filter{condition=[0R(IS NULL($58), CAST(AND(IS NOT NULL($68), ==($67, @))):BOOLEAN
#3-09 Project(FACILITY_ID=[$8], TIME_INV_KEY®=[$1], CALCULATION_EXCEPTION=[$2], SOURCE
03-10 Project{FACILITY_ID=[$0], TIME_INV_KEY®=[$1], CALCULATION_EXCEPTION=[$3], SOUR
83-11 HashJoin(condition=[AND(=(%4, $%$71), =(s2, $70))], joinType=[inner], runtimeF:
#3-13 Project(FACILITY_ID=[$0], TIME_INV_KEY®=[4$1], TIME_INV_KEY1=[$2], CALCULAT:
83-15 HashToRandomExchange (dist@=[[$41]1, distl=[[$2]1]) : rowType = RecordType(l

This example shows that the runtime filter is being used; it is a HashJoin, join type=[inner] join,
and the column name used to filter is dirO. The scan that benefited from this filter was in Phase

dremio.com 10



Query Performance Analysis and Improvement

314-03. (we'll use this phase to drill deeper into the operation to see the benefits of runtime
filtering).

Referring to the screenshots below, scroll down to the Operators section > Find and expand
the phase from the ‘runtimeFilter’ > then Expand Operator Metrics (in this example, it's Phase
314-03). Scroll to the right until you see NUM_PARTITION_PRUNED. Because of runtime
filtering, the query is optimized. Dremio can skip this many row groups (approx. 30 per phase x
number of phases = 80 in this example).

Profile: 1+ | Download

Overview  Profile  Visual Profile ®

314-85-03 0.0088 0.007s 7
314-p5-08 00055 0.0105 ] PR
314-87-03 0.0745 0.072s ] 63 e 1,811,78

Operator Matrics

Thread SETUP NS NUM READERS NUM REMOTE READERS NUM ROW GROUPS NUM VECTORIZED COLUMNS NUM NON VECTORIZED COLUMNSE COPY NS FILTER NS PARQUET EXEC PATH FILTER EXIST

314-00-03 2 2 2 0

ar4-01-0a 8 a s
2 k a 2 a
2 [

Profile: [« | Downloag

Overview | Profile  Visual Profile ®

314-85.03 0008 0.007s 0.1085 7 3,808 aMe
314-86-03 0.005s 209 1 36,4 GKE
314-87-03 0074 0072 0.0625 £ 130,263 e Ipmchasa.net 1,811,787
Operator Metrics

IS NUM_IO_READ HUM_HIVE_PARQUET DECIMAL COERCIONS NUM_ROW GROUPS TRIMMED NUM_COLUMMS TRIMMED | NUM_PARTITIONS PRUNED | NUM_BOOSTED FILE READS MAX BOOSTED FILE READ_TIME NS
1 111 54 o o

o8 o

L]

8 aga 26 o

1 0

111 o

11 3 o

24 2,664 o

444 b o

dremio.com 1



Query Performance Analysis and Improvement
Optimization concept #2: Partition Pruning:

Every query should do partition pruning. If it is not, then it needs to be investigated.

To see if the query is doing partition pruning, let’s look at the physical splits for the dataset and
then compare that to the number of splits scanned to retrieve the data for this query.

To get the physical splits for the dataset, look at the raw metadata in the ‘Convert To Rel’
section in the Planning tab. Search for ‘splits’ - in the example below, the dataset has 214,109
physical splits.

Query and Planning

Query Visualized Plan Planning Acceleration
Validation (6 ms)

Convert To Rel (43 ms)

=[%38])

ounterpartylegalentity’, “currency’, ‘bookinglegalentity’, " ledgeraccount™, '_record_key’, 'runil 1, SpEI%s=[214109]) I

id'], splits=[149704])

Scroll left and capture the table for the dataset.

Query and Planning

Query Visualized Plan  Planning  Acceleration

Validation (6 ms)

Convert To Rel (43 ms)
LUYALE L 4 LLET LI LS LU S B34, AWE3T, —\Pa&; AUeIIi1T
ExpansionNodelpath=[EPS_FRI.com_jpmc_ct_mis_balancesheetaverages_base_v])
LogicalProject(as_of_date=[$34], affected_feed=[$38], _abexid=[$@8], _runtimeid=[$1], accrualtypecode=[%$2], adjustmentidentifie
Logicalloin{condition=[=(%$3@, $31)], joinType=[inner]
LogicalUnion{all=[true])
LogicalProject|{_abexid=[$8], _runtimeid=[$1], accrualtypecode=[%$2], adjustmentidentifier=[$3], adjustmentreasontext=[%$4],
ExpansionNode(path=[EPS_FRI.source.com_jpmc_ct_mis_balancesheetaverages_cold])
men

= runtimeid= = ntifier=

m djustmentreasontext=|
ScanCrel{table=["SFP-HIVE".db_183118_eps_cons_priv.com_jpmc_ct_mis_balancesheetaverages_col columns=["_abexid’,
LogicalPreject({_abexid=[$8], _runtimeid=[$1], accrualtypecode=[$2], adjustmentidentifier=[$3], adjustmentreasontext=[$4],
ExpansionMode({path=[EPS_FRI.source.com_jpmc_ct_mis_balancesheetaverages_hot] )
LogicalProject{_abexid=[$8], _runtimeid=[$1], accrualtypecode=[$2], adjustmentidentifier=[$3], adjustmentreasontext=|
ScanCrel{table=["SFP-HIVE".db_183118_eps_cons_priv.com_jpmc_ct_mis_balancesheetaverages_hot], columns=['_abexid’, °
ExpansionNodelpath=[EPS_FRI.source.com_jpmc_ct_mis_balancesheetaverages_metadata] )
LogicalProject{runid=[$@], ingest_mode=[$1], dlp_event_time=($2], as_of_date=[CAST($3):DATEl, validations=[$4], meta_infc
ScanCrel{table=["SFP-HIVE".db_103118_eps_cons_priv.com_jpmc_ct_mis_balancesheetaverages_metadatal, columns=[ runid’, “i

Evnaneiankladalasth—(EDE EDT ram inme et cafdats hoed some eikhlak ull

dremio.com 12



Query Performance Analysis and Improvement

Next, scroll down to the Physical Plan (Final Physical Transformation) and search for that table
name to get the number of splits scanned for that table. Scroll to the right and see the value of
‘splits”

Final Physical Transformation (8 ms)

dU JUS LINENLTIEdOUITLEA L, VARLIMARIUJIIIU] UUURLIIYUUSIITESSUINILLIUCIILLT IET , VARLIMARIUIJIIU] UUURLIYLEYaLCIILLLylugiiL L el
1AR(65536) originalsourcesystemidentifier, VARCHAR(65536) sourcesystemidentifier, VARCHAR(65536) uploadcommentte
336) sourcesystemidentifier, VARCHAR(65536) uploadcommenttext, BIGINT runid, DOUBLE CAST): rowcount = 784414.68:
\R(65536) adjustmentreasontext, VARCHAR(G65536) bookingbusinessunitidentifier, VARCHAR(65536) bookinglegalentity:
i5536) sourcesystemidentifier, VARCHAR(65536) uploadcommenttext, BIGINT runid, DOUBLE CAST): rowcount = 211388.:
RecordType (VARCHAR(65536) adjustmentreasontext, VARCHAR(65536) bookingbusinessunitidentifier, VARCHAR(65536) b
fARCHAR (65536) sourcesystemidentifier, DECIMAL(38, 9) spotbalanceusdeamount, WARCHAR(65536) uploadcommenttext, |
‘3208'), =(%2, '3982'), =(%2, '@e847'), =(s2, '1697'), =(3%2, '3767'), =(%2, '3725'), =(%2, '376@'), =(%2, '0449'
itifier’, °“spotbalanceusdeamount®, “uploadcommenttext™, “runid’]§ splits=[36], mode=[NATIVE_PARQUET]N : rowType
\R(65536) adjustmentreasontext, VARCHAR(65536) bookingbusinessunitidentifier, ookinglegalentity:
i5536) sourcesystemidentifier, VARCHAR(65536) uploadcommenttext, BIGINT runid, DOUBLE CAST): rowcount = 573026.!
RecordType (VARCHAR(65536) adjustmentreasontext, VARCHAR(65536) bookingbusinessunitidentifier, VARCHAR(65536) b
fARCHAR (65536) sourcesystemidentifier, DECIMAL(38, 9) spotbalanceusdeamount, WARCHAR(65536) uploadcommenttext, |
‘3208'), =(%2, '3982'), =(%2, '0847'), =($2, '1697'), =(3%2, '3767'), =(%$2, '3725'), =(%2, '376@'}, =($2, '0449'
rifier’, "spotbalanceusdeamount”, ‘uploadcommenttext™, “runid’ ], splits=[1], mode=[NATIVE_PARQUET]} : rowType =

In this example, Dremio scanned only 36 splits out of 214,109 physical splits, resulting in a
much faster query response time.

dremio.com 13



Query Performance Analysis and Improvement

Optimization concept #3: Filter Push Down

Filter Push Down is an optimization technique that minimizes the data that must be scanned,
improving query performance. It’s a feature of Dremio and nothing explicit has to be done by
the data engineer to use this feature. Filter push-down is not as optimal as the other
optimization methods discussed earlier - because Dremio will still need to open the splits and
read the footer.

Let’s look at a scenario when you are querying a dataset using a filter column, but the data is
not partitioned by that column. In this case, the number of splits scanned will not be reduced,
but the number of parquet bytes read should be less.

To identify a ‘filter push down’ in a query Profile, search for filters="in the Planning tab > Final
Physical Plan section. Look at the number of splits, which are the splits to be scanned, and
compare it to the number of splits from the ‘Convert to Rel’ section for the same table, which
shows the actual number of splits for that table. In the example below, you can see it’s 920 in
both cases. This means that there was no reduction in splits.

This section shows the actual number of splits for that table.

Convert To Rel (3,855 ms)

DERIVS_DIM_TIME_LOV])
DESC=[$2], TIME_INV_KEY=[$3], ACTUAL_TIME_INV_KEY=[$4], ACTUAL_TIME_INV_DESC=[$5], SNAPSHOT TYPE=[$6], DIR@=[$7])

columns=["SLNO", 'DATAMART, ‘TIME_INV_DESC', TIME_INV_KEY', 'ACTUAL_TIME_INV_KEY', "ACTUAL_TIME_INV_DESC', 'SNAPSHOT_TYPE', 'dire']J splits=[920])
1

s'11)
_Lovl, columns=['SLNO", 'DATAMART®, "TIME_INV_DESC", 'TIME_INV_KEY', "ACTUAL_TIME_INV_KEY', "ACTUAL_TIME_INV_DESC', 'SNAPSHOT_TYPE', ‘dir@’], splits=[!

DERIVS_DIM_TIME_LOV] )

DESC=[$2], TIME_INV_KEY=[$3], ACTUAL_TIME_INV_KEY=[$4], ACTUAL_TIME_INV_DESC=[45], SNAPSHOT_TYPE=[$6]1, DIR@=[371}

This section shows the number of scanned splits for that table.

Final Physical Transformation (108 ms)
UIIJ.U”LI\LIICI[IQ!‘_‘ B IUWJ)’PE o I'\ELUIUI}'PE\\‘HT\LIKHF\\UJJJU} urrey. rowLuune — J£.9, LUMU LA LULVE LuSsL — 1L104.v

PargquetScan(table=[CRRTDW.PUBLIC_USERS_FLAT_VERSIOM], columns=["dir®'], splits=[91]) : rowType = Re
ie = RecordType(VARCHAR(65536) ACTUAL_TIME_INV_KEY): rowcount = 1159091.9999999998, cumulative cost = {2457521
‘owType = RecordType(VARCHAR(65536) ACTUAL_TIME_INV_KEY): rowcount = 13171.499999999996, cumulative cost = {12
ie = RecordType(VARCHAR(65536) ACTUAL_TIME_INV_KEY): rowcount = 131715.@, cumulative cost = {1166714.760869565
INV_KEY=[$@]) : rowType = RecordType(VARCHAR(65536) ACTUAL_TIME_INV_KEY): rowcount = 131715.@, cumulative cos
=[=(%1, $2}1, }01nType Ilnner], runtimeFilter=[[247-85 dir@l]) : rowType = RecordType(VARCHAR(65536) ACTUAL_T

ble=[CRRTDW. IJERI\FS DIM_TIME LDV] columns= { TIME_INV_KEY®

ip= E{}] EXPR$O=[MAX($0)]1) : rowType = RecordType{VARCHAR(GSSBGJ EXPR$BJ rowcount = 1.8, cumulative cost = {5
je : rowType = RecordType{VARCHAR(65536) EXPR$®): rowcount = 1.8, cumulative cost = {587962.76@86956525 rows,
group=[{}], EXPR$@=[MAX(3$0}]1}) : rowType = RecordType[UARCHAR{GBSBG} EXPR$0): rowcount = 1.8, cumulative cost
ican(table=[CRRTDW.DERIVS_DIM_TIME_LOV], columns=["dir®’], splits=[887]) : rowType = RecordType(VARCHAR(65536)
|_EXCEPTION=[$1], CLIENT_ID=[$2], LE_CLIENT_ID=[$3], SOURCE_SYSTEM=[$4], COB_DATE=[$5], RECALC_MTM_AMT=[$&], S
IN_EXCEPTION=[$11, CLIENT_ID=[$2]1, LE_CLIENT_ID=[$3], SOURCE_SYSTEM=[$41, COB_DATE=[$5], RECALC_MTM_AMT=[$61,

However the query is still optimized because Dremio looks at the parquet file footer to see if
that column exists in that file and only scans that file. Dremio will also know which row groups

dremio.com 14



Query Performance Analysis and Improvement

have that column and only scan those row groups. You can see this in the Profile by looking at
the number of parquet bytes read. Determine the phase where the filter happens > go to
Operators > for that scan, expand the Operator Metrics and see the value of
parquet_bytes_read.

Operator Metrics

_NON_VECTORIZED_COLUMNS COPY_NS FILTER_.NS PARQUET _EXEC_PATH FILTER EXISTS | PARQUET_BYTES_READ | NUM_ASYNC_STREAMS

0 2 1 19,720,055 8

It's essential to understand the impact of a filter on a non-partition column if there are too
many small files. In this case, Dremio has to look at the footer of all the small files, which will
adversely impact performance.

Conclusion

In this document, we introduced some key concepts to analyze and tune queries in Dremio. We started
by looking at the metrics in the query profile report and took action accordingly.

Remember, looking at the whole cluster is essential, as other queries may impact the query. To
minimize the impact of other workloads, you can set up engines to isolate workloads. Please review the
Workload Management section in the Docs.

We recommend having a Dremio Professional Services resource do a thorough health check of your
cluster at least once yearly. Please reach out to your account executive to request a health check.

dremio.com 15


https://docs.dremio.com/current/admin/workloads/workload-management/

