
Dremio Software

Ingest and Manipulate
Data Using Dremio and
Iceberg

Introduction
Organizations have built data lakes leveraging cloud storage to host vast amounts of
structured, semi-structured and unstructured data. However, unlike data warehouses, which
allow easy data updates, it’s quite a challenge to update data in a data lake.

A data lakehouse combines the flexibility and scalability of a data lake with the structured and
optimized processing capabilities of a data warehouse. This document describes the steps and
design considerations for building a data lakehouse using Dremio and Apache Iceberg to ingest
and manipulate data in the data lake easily and quickly.

⚠ NOTICE
This document assumes you have Dremio version 24.3 or higher installed and running.

dremio.com

Ingest and Manipulate Data Using Dremio and Iceberg

Design Considerations for Data Lakehouses

When building a data lakehouse where we want to be able to ingest and manipulate data
directly using the Iceberg table format in our data lake, the following operational and functional
aspects need to be considered:

● Historic data upload
● DML operations on data (Insert / Update / Delete)
● Rewrite data to optimal file size
● Time travel
● Rollback
● Vacuum
● Schema evolution to accommodate change requests
● Concurrency
● Metadata refresh
● Table rollback in any eventuality

The following sections of this document take you on a walk-through of an example Dremio
Data Lakehouse to demonstrate how Dremio addresses each of these aspects.

dremio.com 2

Ingest and Manipulate Data Using Dremio and Iceberg

Sample Data Lakehouse
In this example, we regularly collect sensor data into on-premises Minio storage. This sensor
keeps track of the temperature of a device. As you can see from the snippet of data below, the
data stored in Minio is in CSV format.

ts_year,ts_month,ts_day,ts_hour,ts,metric,data

2024,1,5,18,2024-01-05 18:06:49.000,'Temperature',107.85

2024,1,5,18,2024-01-05 18:06:49.000,'Temperature',67.34

2024,1,5,18,2024-01-05 18:06:49.000,'Temperature',110.26

2024,1,5,18,2024-01-05 18:06:49.000,'Temperature',90.65

2024,1,5,18,2024-01-05 18:06:49.000,'Temperature',74.35

As part of creating our Data Lakehouse solution, we wish to store and analyze this sensor data
in an Azure ADLS Gen 2 data lake using Dremio and Iceberg.

Table Creation
We assume that Dremio is already connected to the Azure Storage data lake source called
appazure. In Dremio, we can use the CREATE TABLE command to create a table called
demotable in that target appazure source. The syntax for this is as follows:

CREATE TABLE appazure.demotable (ts_year INT, ts_month INT, ts_day INT, ts_hour INT,

ts TIMESTAMP, metric VARCHAR(100), data DECIMAL(10,2))

Historic Data Upload
Dremio provides the COPY INTO SQL command to upload large volumes of data to Iceberg
tables.

We must load the historic CSV data from Minio into the Iceberg table we created in the
previous section. In Dremio, we also have a connection to the Minio data source, which is
called miniolake, and we can see that the CSV data resides in a folder called wp.

dremio.com 3

https://docs.dremio.com/current/reference/sql/commands/apache-iceberg-tables/apache-iceberg-create
https://docs.dremio.com/current/reference/sql/commands/apache-iceberg-tables/copy-into-table

Ingest and Manipulate Data Using Dremio and Iceberg

By running the following command in Dremio, we can load the historical data into our Iceberg
table:

COPY INTO appazure.demotable FROM '@miniolake/wp/data-2024-01-05_18:06:49.544348.csv'

DML Operations On Data
With data now loaded into the Iceberg table, there are several scenarios where periodic
changes might need to be made to the contents of the table:

● Insertion of new records - Use Dremio’s INSERT statement
● Update of specific existing records - Use Dremio’s UPDATE statement
● Deletion of specific records - User Dremio’s DELETE statement
● Bulk insert from files - Use the same COPY INTO command referenced previously to load

periodic data into the target table.
● Bulk update or insert from another source table - Requires a two-step process. First, use

COPY INTO to load data to a temporary table, then use MERGE to insert or update records
from the temporary table to the target table.

dremio.com 4

https://docs.dremio.com/current/reference/sql/commands/apache-iceberg-tables/apache-iceberg-insert
https://docs.dremio.com/current/reference/sql/commands/apache-iceberg-tables/apache-iceberg-update
https://docs.dremio.com/current/reference/sql/commands/apache-iceberg-tables/apache-iceberg-delete
https://docs.dremio.com/current/reference/sql/commands/apache-iceberg-tables/copy-into-table
https://docs.dremio.com/current/reference/sql/commands/apache-iceberg-tables/copy-into-table
https://docs.dremio.com/current/reference/sql/commands/apache-iceberg-tables/apache-iceberg-merge

Ingest and Manipulate Data Using Dremio and Iceberg

Rewrite Data to Optimal File Size

Insert, Update and Delete operations on the Iceberg table will cause parquet files supporting
the table to be created in the data lake. As more files get added to the table, there may be a
need to optimize the Iceberg table in Dremio due to suboptimal file sizes and an evolving
partition scheme. The OPTIMIZE command supports the bin_pack clause, enabling users to bin
pack files (i.e. reduce the number of data files by putting as much data as possible together) in
partitions they actively write to.

As an example, the following SQL command will pick up all files of size less than 100MB or
greater than 1GB and rewrite them to file sizes of 256 MB. It will need at least five files
satisfying the criteria to make the SQL operation successful.

OPTIMIZE TABLE appazure.demotable REWRITE DATA USING BIN_PACK (MIN_FILE_SIZE_MB=100,

MAX_FILE_SIZE_MB=1000, TARGET_FILE_SIZE_MB=256, MIN_INPUT_FILES = 5)

Time Travel

Snapshot-Based

Each change made to an Iceberg table creates a snapshot of that table. A snapshot is a
timestamped version of a table. Users can get historical versions of the data by using time
travel queries that contain the AT SNAPSHOT clause to retrieve snapshots.

For example, let’s first consider that we have some temperature data (see the data column) for
a particular timestamp in our Iceberg table demotable.

dremio.com 5

https://docs.dremio.com/current/reference/sql/commands/apache-iceberg-tables/optimize-table
https://docs.dremio.com/current/reference/sql/commands/apache-iceberg-tables/apache-iceberg-select/#time-travel-by-snapshot-id

Ingest and Manipulate Data Using Dremio and Iceberg

We can now update the data for this specific timestamp, making all data values 0.

Now we see that in the current, most recent snapshot, the data field has been updated as per
our update statement:

Since Iceberg supports time travel, users can still query the data from a point in time before
the update statement was executed. Doing this requires us first to query the history
information for our Iceberg table, which will give us a list of all snapshots created for the table,
when they were created, and the snapshot_id of each snapshot. We can use the following
query to retrieve the snapshot history:

SELECT * FROM TABLE(TABLE_HISTORY('appazure.demotable'))

dremio.com 6

Ingest and Manipulate Data Using Dremio and Iceberg

The data above shows that the snapshot_id “5931800812968202180” represents the state just
before our update statement was executed. By introducing the AT SNAPSHOT '<snapshot_id>'

clause into the query against our Iceberg table, we can see the data pertaining to that point in
time before the update.

Timestamp-Based

Iceberg tables also support timestamp-based references where users can select historical
versions of the data by using time travel queries that contain the AT <timestamp> clause. A
query using this clause will use the most recent Iceberg snapshot as of the provided
timestamp.

Rollback

Iceberg allows rolling back a table to any previous snapshot using either a timestamp or a
snapshot ID together with the ROLLBACK TABLE command.

Rollback to a Previous Snapshot

When you roll back an Iceberg table using a snapshot, you create a new snapshot containing
the same state as the referenced snapshot. Here, we are rolling back our demotable Iceberg
table to the snapshot before we made the updates in the previous section.

dremio.com 7

https://docs.dremio.com/current/reference/sql/commands/apache-iceberg-tables/apache-iceberg-select/#time-travel-by-timestamps
https://docs.dremio.com/current/reference/sql/commands/apache-iceberg-tables/rollback-table

Ingest and Manipulate Data Using Dremio and Iceberg

By issuing the same original query as in the previous section, we can see our data has reverted
to how it looked before it was updated.

Rollback to a Specific Point In Time

When you roll back an Iceberg table using a timestamp, you are reverting the table to a previous
snapshot based on your specified time. Specifically, if the timestamp matches a snapshot's
timestamp exactly, the Iceberg table is rolled back to that snapshot. Otherwise, the table is rolled
back to the last snapshot before the specified timestamp.

Vacuum
As discussed previously, Dremio creates a snapshot for any DML operation applied to the
table. At some point, we may decide that older snapshots are no longer needed. You can use
the VACUUM TABLE command to remove snapshots you no longer need and the files (data files,
the manifest file, the manifest list file, and partition stats files) associated only with them.

To demonstrate this, as a first step, we can remind ourselves of the snapshots associated with
our demotable.

dremio.com 8

https://docs.dremio.com/current/reference/sql/commands/apache-iceberg-tables/vacuum-table

Ingest and Manipulate Data Using Dremio and Iceberg

We can see above that the most recent snapshot is taken as of '2024�01�11 05�52�21.262'.
Using the following statement, we can keep the latest snapshot and eliminate all previous ones.

VACUUM TABLE appazure.demotable

EXPIRE SNAPSHOTS OLDER_THAN '2024-01-11 05:52:21.262' RETAIN_LAST 1

Organizations may keep as many historic snapshots as desired, per their policy.

⚠ NOTICE
VACUUM effectively purges the data associated with earlier snapshots. It cannot be regained
with a ROLLBACK. So users can only do time travel on the remaining snapshots.

Schema Evolution
Dremio allows altering a table’s definition or schema using the ALTER TABLE command.
As an example, we can add a partition scheme on an existing column in our demotable using
the following statement:

ALTER TABLE appazure.demotable ADD PARTITION FIELD ts_year

dremio.com 9

https://docs.dremio.com/current/reference/sql/commands/apache-iceberg-tables/apache-iceberg-alter

Ingest and Manipulate Data Using Dremio and Iceberg

;TIP
Run the OPTIMIZE command after adding a partition

Concurrency
Iceberg supports concurrent reads. Readers always use a consistent snapshot of the table
without holding a lock.

Iceberg supports multiple concurrent writes wherein each writer assumes that no other writers
are operating and writes out new table metadata for an operation. Then, the writer attempts to
commit by atomically swapping the new table metadata file for the existing metadata file.

If the file swap fails because another writer has committed, the failed writer retries by writing a
new metadata tree based on the new current table state.

Metadata Refresh
For Iceberg Tables created by Dremio, there is no need to do a metadata refresh separately.
When data is added or updated in an Iceberg table, the table's metadata is updated with DML
operation, so no separate refresh is needed.

Suppose all or a majority of your datasets are Iceberg tables. In that case, there may be no
need to set up an isolated engine for metadata refresh since that engine will likely be
underutilized.

Other Considerations
There are two approaches to handling deletes and updates in a Data Lakehouse:
copy-on-write �COW� and merge-on-read �MOR�.

Like with almost everything in computing, there isn’t a one-size-fits-all approach; each
strategy has trade-offs that make it the better choice in certain situations. The considerations
largely come down to latency on the read versus write side.

dremio.com 10

Ingest and Manipulate Data Using Dremio and Iceberg

Copy-On-Write �COW� – Best for tables with frequent reads, infrequent writes/updates, or
extensive batch updates

Merge-On-Read �MOR� – Best for tables with frequent writes/updates

This blog post gives an excellent summary of the differences between the two strategies.

⚠ NOTICE
Dremio supports only the copy-on-write storage mechanism and reads only the latest data
files for each Iceberg v2 table against which you run SQL commands. Dremio does not
support Iceberg v2 tables that have merge-on-read manifests.

Conclusion
Data lakehouses built using Iceberg provide the capacity to store and analyze huge volumes of
data. Parallely, it gives flexibility for easy data manipulation and features like time travel and
schema evolution. With the help of an example, this document demonstrated how users can
build a data lakehouse using Dremio and Iceberg.

dremio.com 11

https://www.dremio.com/blog/row-level-changes-on-the-lakehouse-copy-on-write-vs-merge-on-read-in-apache-iceberg/

