dremio

Dremio Monitoring in
Kubernetes

Introduction

This guide provides a framework for implementing Prometheus monitoring within a Kubernetes
environment, tailored explicitly for tracking the performance and resource utilization of Dremio,
a powerful data analytics platform.

The aim is to give users a clear understanding of the critical aspects that need monitoring.
Such monitoring is crucial to accurately assess the hardware capacity constraints of a Dremio
deployment and identify the appropriate times for scaling up resources, including CPUs,
memory, and disk performance. This document is both an instructional guide and a resource
for optimizing Dremio's operational efficiency through effective monitoring strategies.

dremio.com

Dremio Monitoring in Kubernetes

What are Prometheus and Grafana?

Prometheus and Grafana are open-source tools widely used for monitoring and observability in
software systems. They are often used together because they complement each other's
capabilities.

Prometheus

Prometheus is a monitoring system and time series database. It is particularly well-suited for
monitoring the performance of distributed systems, including microservices architectures.
Prometheus collects and stores metrics as time series data, which means the data is stored
with timestamps to indicate when it was recorded. It offers a powerful query language, PromQL
(Prometheus Query Language), to let users select and aggregate data. Prometheus's
architecture is simple and does not require distributed storage; the main components include a
time-series database, a data retrieval worker, and an alert manager.

Grafana

Grafana is an open-source platform for analytics and interactive visualization. While it can be
used with various data sources, it is particularly popular for visualizing time series data, making
it an ideal companion for Prometheus. Grafana provides a rich set of features for creating
dashboards with multiple panels, each displaying data from sources like Prometheus in various
visual formats like graphs, charts, tables, etc. It is highly customizable and supports alerts and
notifications, which can be configured based on monitored data.

Together, Prometheus and Grafana are often used to enable real-time monitoring and alerting
for IT infrastructure and application performance. Prometheus collects and stores the metrics,
while Grafana is used to visualize those metrics and create insightful dashboards. This
combination helps in identifying issues and performance bottlenecks in a system.

Initial Prometheus Setup

Create a Namespace for Prometheus

Create a Namespace in Kubernetes called monitoring :

$ kubectl create ns monitoring

dremio.com 2

Dremio Monitoring in Kubernetes

Install Metrics Server

1) NoTE

This step is not required for Azure Kubernetes Service (AKS).

This metrics server will need to be installed to use the default scaling metrics of CPU and
memory usage. Installation steps are as follows:

Add the kubernetes-sigs repo
$ helm repo add metrics-server https://kubernetes-sigs.github.io/metrics-server/

Install Metrics Server
$ helm install metrics-server metrics-server/metrics-server -n monitoring

Install Prometheus Stack

To have the required Custom Resource Definitions (CRD), we will need to install the
Prometheus Stack using the steps below.

Before following the steps, create a copy of the Prometheus stack template file
values prometheus.hc.55.7.0.yml. Walk through the file and replace all values marked with a
‘TODQ". This includes node selectors, storage classes and hostnames.

Add the prometheus-community repo
helm repo add prometheus-community https://prometheus-community.github.io/helm-charts
helm update

Install kube-prometheus-stack
$ helm upgrade --install prometheus prometheus-community/kube-prometheus-stack -n
monitoring --version 55.7.0 -f kube-prometheus-stack/values_prometheus.hc.55.7.0.yml

Configure Dremio for Prometheus Monitoring

Dremio needs to be configured so that it exposes the metrics to Prometheus. The guide
assumes that Dremio's official Helm Charts have been used:

dremio.com 3

https://github.com/kubernetes-sigs/metrics-server
https://github.com/prometheus-community/helm-charts/tree/main/charts/kube-prometheus-stack
https://github.com/dremio-professional-services/dremio-prometheus-monitoring/blob/main/kube-prometheus-stack/values_prometheus.hc.55.7.0.yml
https://github.com/dremio/dremio-cloud-tools

Dremio Monitoring in Kubernetes
Configure Dremio

When Dremio is deployed using the official Helm Charts, the values.yaml file needs to be
copied and modified.
The following needs to be added to values.yaml:

coordinator:

extraStartParams: >-
-Dservices.web-admin.port=9010
-Dservices.web-admin.enabled=true
-Dservices.web-admin.host=0.0.0.0

executor:

extraStartParams: >-
-Dservices.web-admin.port=9010
-Dservices.web-admin.enabled=true
-Dservices.web-admin.host=0.0.0.0

Additionally, it is required to patch the templates/dremio-executor.yaml file and the
templates/dremio-master.yaml file to add the container port for monitoring:

- containerPort: 9010
name: prometheus

Configure Zookeeper

To enable Prometheus metrics for Zookeeper, the templates/zookeeper.yaml file needs to be
patched:

An additional env variable needs to be added (around line 110).
- name: Z0OO_CFG_EXTRA

value:
metricsProvider.className=org.apache.zookeeper.metrics.prometheus.PrometheusMetricsProvider
metricsProvider.httpPort=9010
Web port needs to be added (around line 126)
- containerPort: 9010

name: prometheus

dremio.com 4

Dremio Monitoring in Kubernetes

Add Pod Monitors

To add the pod monitors so that Prometheus starts scraping the metrics from Dremio and
Zookeeper, run the following command:

$ kubectl apply -n <dremio namespace> -f
https://raw.githubusercontent.com/chufe-dremio/dremio-prometheus-monitoring/main/specs/
dremio-pod-monitor.yaml

$ kubectl apply -n <dremio namespace> -f
https://raw.githubusercontent.com/chufe-dremio/dremio-prometheus-monitoring/main/specs/
zookeeper-pod-monitor.yaml

Install the Grafana Dashboard

Login into Grafana, click the '+'icon at the top right and select "Import dashboard". Upload this
Dremio_Monitoring.json file to Grafana.

What should we monitor?

Coordinator Command Pool

If you see “Command Pool Queue Size” going up, this shows jobs are waiting to be planned. It
is an indicator because all planning threads are too busy to plan. For example, allocating 15
CPUs to the coordinator will use 15 minus 1 CPUs for planning. This means the coordinator can
plan 14 queries in parallel.

If the queries need to wait until they get planned, this could indicate the following:

Many inlined meta-data refreshes are running during planning.

e The number of CPUs needs to be higher to plan the amount of queries sent to the
coordinator. Please check for high CPU utilization on the coordinator node.

e The disk is too slow, and the CPU waits for 10. Please check the disk saturation, disk |10
wait time, and disk 10 utilization in Kubernetes Nodes. If there is a high utilization, please
add capacity for throughput and IOPS.

dremio.com 5

https://github.com/dremio-professional-services/dremio-prometheus-monitoring/blob/main/grafana/Dremio_Monitoring.json

Dremio Monitoring in Kubernetes

Command Pool

1

12:00 12:30 13:00 13:30 14:00 14:30 15:00 15:30 16:00 16:30 17:00

Coordinator Heap

Garbage collection times could increase if the heap allocation permanently hits its limit (Java
setting -Xmx). Consider adding more heap memory and optimizing the GC settings so that
memory is freed up much earlier.

Coordinator - Heap Used

13:30 14:00 14:30 15:00 15:30 16:00 16:30 17:00

Coordinator CPU Usage

A high CPU utilization on the coordinator nodes indicates that the node is under-sized. It
would most likely come together with an increased planning time and command pool wait
queue (see above).

CPU Usage

== dramio-master-0

== raguests

limits

dremio.com 6

Dremio Monitoring in Kubernetes

Executor CPU Usage

Your resources are fully utilized if you see a permanent high CPU utilization (not just peaks)
across all executors. Adding more nodes or increasing the number of CPUs on the executor
node, e.g. from 16 to 32, is recommended to improve the query speed.

CPU Usage

Name
dremio-executor-0
requests

limits

Executor Memory Usage

If you constantly hit the configured requests and limits across all nodes, consider adding more
capacity, e.g. nodes with more memory or more nodes. Ensure that you do not exceed the
configured requested memory. If this happens, the heap and direct memory need to be
reduced.

Memory Usage

128 GIB
e emio-executor-0
96 GIB
= requests

64 GiB » limits

32 GIB == RSS dremio-executor-0
a2 ailD

0B
16:00 16:30 17:00

Node IO Utilization and 10 Wait

These metrics are on the node level and apply to the coordinator and executors.

Coordinators: If you see a high “Disk IO Utilisation” exceeding 70 % permanently, you must add
faster disks because your disk slows down query planning. A high disk IO utilization likely
comes with a high “IO wait time” and “Command Pool Wait Queue”. 10 wait time means that the
CPU waits for the disk or network.

dremio.com 7

Dremio Monitoring in Kubernetes

The coordinator is the central instance orchestrating the entire cluster. It should never get into
an 10 wait’ state.

Executors: When you see a high disk utilization exceeding 90%, a disk saturation exceeding
400%, or an IO wait time on the executor, you should consider replacing the disks. Itis less
critical than the coordinator. Still, if you want to improve the query performance and utilize the
CPU capacity, replacing the disks with more IOPS and throughput is recommended. The
executor disks are used for spilling and cloud columnar cache.

The example below shows perfectly why a performant disk is essential. It is highly utilized and
saturated with high IO wait, but on the other hand, the CPU idles with 1% utilization.

The disk is utilized 100%.

Disk 10 Utilisation

100%
80%
60%

10.240.0.231:9100 - sde

The disk is also saturated. The value should be at most 300 to 400%.

Disk 10 Saturation

20000%
15000%

10000%

10.240.0.231:9100 - sdc

5000%

0%

We can see that the CPU waits on 10 ...

dremio.com 8

Dremio Monitoring in Kubernetes

10 Wait in %

100%

80%

== 10.240.0.231:9100

13:00

... and finally, the CPU idles because it waits on IO.

CPU Utilisation

10.240.0.231:9100

Summary

This document provides an overview of setting up Prometheus monitoring in a Kubernetes
environment to monitor Dremio, a data analytics platform. The emphasis is on the necessity of
monitoring for understanding and managing the hardware capacity limits of a Dremio
deployment. Monitoring can determine when to scale resources such as CPUs, memory, or disk
speed to maintain optimal performance.

The document details the configurations needed for Dremio and Zookeeper to ensure their
metrics are accessible to Prometheus. It also guides the user through adding pod monitors for
Dremio and Zookeeper, enabling Prometheus to scrape metrics effectively.

Key metrics that should be monitored are outlined. These include the Coordinator Command
Pool, Coordinator Heap, Coordinator CPU Usage, Executor CPU Usage, Executor Memory
Usage, and Node IO Utilization and IO Wait. These metrics are critical for assessing the
performance and efficiency of the Dremio deployment, identifying potential bottlenecks, and
making informed decisions about scaling and resource allocation.

In summary, the document serves as a comprehensive guide to setting up Prometheus
monitoring in a Kubernetes environment for Dremio, highlighting the importance of specific

metrics in understanding and optimizing the performance of the data analytics platform.

dremio.com 9

