
Dremio Software

Best Practices for
Using Dremio with BI
Tools

Introduction
This document provides best practices for business and technical users on how to model and
build performant analyses and dashboards using BI tools on Dremio.

dremio.com



Best Practices for Using Dremio with BI Tools

Architecture overview
Dremio acts as the query engine, which connects to all your data lakes or databases and
provides BI dashboards with fast and governed access to data.

dremio.com 2



Best Practices for Using Dremio with BI Tools

The Importance of Dremio BI Tool Best Practices
In emerging data lake architectures, data volume has increased significantly compared to
traditional databases. At the same time, the connection protocol of BI tools like Power BI
(single-threaded ODBC/JDBC� has remained constant. Thus, it is essential to leverage Dremio’s
query engine and semantic layer before loading the data into dashboards to preserve end
users' performance SLAs.

dremio.com 3



Best Practices for Using Dremio with BI Tools

General best practices for connecting BI tools to Dremio
1. Be aware of the size of the underlying data - Trying to consume billions of records in a

dashboard will be either slow or impossible. Be sure to pre-aggregate or limit your data
to a granularity that your dashboard can handle.

2. Be aware of the complexity of your data model and the required operations - If your
dashboards do not meet your performance SLAs, try to simplify your operations or
leverage Dremio’s reflections to accelerate your most expensive queries.

3. Review and understand the query patterns of your dashboards - BI tools will generate
SQL queries that are sent to Dremio. These queries can be reviewed in the Dremio job
history tab to understand the causes of performance bottlenecks or lack of reflection
matching, sometimes introduced by unconventional SQL code created by the BI tool.

4. Use direct connection �DirectQuery) over imported data �Import Mode), wherever
possible - Direct queries avoid creating stale copies and ensure that your dashboards
are always up-to-date. Additionally, by using direct queries, your users benefit from the
power of your Dremio cluster instead of relying on their local machines or Power BI
service. If you need to materialize data, Dremio reflections are recommended over
dashboard imports since you can leverage reflections across all of your queries,
dashboards, and use cases.

5. Verify your underlying data model assumptions on the actual data - For example,
when modeling foreign key relationships between tables, your BI tool will use
optimization techniques, like join-pruning, when sending queries to the data lake via
Dremio. Your BI tool may return incorrect results if the underlying data quality does not
align with these assumptions and constraints.

6. Enforce data governance via access controls and row-/column-level security -
Dremio’s role-based access control �RBAC� allows limiting access to sources, folders,
datasets, and even individual rows or columns based on the user’s identity or group
membership. When users connect via single sign-on in their BI tool, their identity is
known to Dremio and appropriate controls are applied.

7. Make a conscious decision on where you build and maintain your data model - Having
Dremio’s semantic layer to access all your data allows you to define a single definition of
truth for important business datasets that propagate to all downstream BI dashboards.
On the other hand, not every dashboard may need all tables to be pre-joined in the
semantic layer and Dremio allows for the flexibility of defining data models inside of the
BI tool as well.

dremio.com 4



Best Practices for Using Dremio with BI Tools

8. Write business logic in SQL rather than using vendor-proprietary query languages
(like Power BI’s DAX� - SQL has been the language of data for almost 50 years. It allows
logic to be transferred to hundreds of technologies. Vendor-proprietary languages, like
DAX, move core business logic into a client application �Power BI� that makes it difficult
or impossible to re-use across use cases and technologies.

9. Monitor your dashboard performance over time - Both the size of your data and the
overall cluster workload will change over time. Be sure you understand the volume and
concurrency of users and react with the appropriate workload management and cluster
sizing. For example, large dashboards containing many widgets may send dozens of
smaller queries. High concurrency limits in Dremio will eliminate the unnecessary need
for those queries to wait in the queue.

dremio.com 5



Best Practices for Using Dremio with BI Tools

Power BI-specific best practices for connecting to Dremio

Power BI Connection Types �Dataset Modes)

There are several means of connecting to Dremio from Power BI�

● DirectQuery �DQ�� Power BI connects directly to Dremio data on demand
● Import: Power BI captures a snapshot of data from Dremio and caches it
● Composite: Power BI uses both Import and DQ within the same data model

➔ Read More about Connection Types �Dataset Modes).

Ideally, Power BI should always connect to Dremio using DirectQuery �DQ�; this offers the
lowest data latency and prevents the need to store costly and redundant data copies within
Power BI reports and Power BI data models.

➔ Read more about DirectQuery.

For a given data model, the choice of connection type depends on several factors:

● Granularity of data
● Volume of data
● Freshness of data
● Utilization of standard SQL versus custom DAX expressions
● Level of report interactivity
● Application of access controls

Import mode offers the best performance for report interaction, particularly where DAX is
used. However, high data volumes can result in increased Power BI Premium Capacity storage
costs, and access controls to data must be applied inside Power BI. In contrast, DQ enables
reduced data latency and reduced costs but at the expense of interactive performance. Given
that both modes offer advantages and disadvantages, the typical best practice is to employ a
composite connection strategy that leverages both modes.

dremio.com 6

https://docs.microsoft.com/en-us/power-bi/connect-data/service-dataset-modes-understand#import-mode
https://docs.microsoft.com/en-us/power-bi/connect-data/desktop-directquery-about


Best Practices for Using Dremio with BI Tools

Hybrid Tables

This kind of table can leverage both Import and DQ modes. We can configure a partition within
Power BI to divide “hot” data (recent) and “cold” data (historical). As a result, the most
commonly used hot data is imported into Power BI and less frequently used cold data is
accessed dynamically via DQ. This has the advantage of providing fast interaction times for the
most used data whilst limiting the amount of data imported into Power BI, reducing Premium
Capacity Storage costs. This approach can also facilitate near real-time reporting by switching
the hot data to DQ and the cold data to Import. When enabled, this is done automatically by
Power BI rather than requiring a partition.

➔ Read more about Hybrid Tables

User-defined Aggregations
⚠ IMPORTANT NOTE
Since August 2022, due to changes in functionality, Power BI will ignore import mode
aggregation tables with SSO-enabled data sources (like Dremio) because Power BI cannot
keep track of permissions when the granularity of data is reduced via aggregations.

As discussed previously, aggregation is at the core of the composite connection strategy.
Aggregations can be defined in either Power BI as part of the Data Model or within Dremio as a
view, table or aggregate reflection and consumed by the Data Model. Regardless of the
method chosen, it’s essential that the aggregation is pushed down to Dremio as much as
possible to avoid massive volumes of data needing to be consumed and computed by Power
BI.

Power BI Aggregate Tables offer developers the ability to create aggregations without the
need to interact with Dremio. Essentially, transformations in Power Query Editor �PQE� are used
to define group bys and filters, which are then pushed down to Dremio by a mechanism known
as Query Folding. This can have the advantage of making SQL less relevant for Power BI
developers, as these aggregations are defined exclusively within the Power BI interface.
However, building aggregations in Dremio would make those computations reusable in multiple
Power BI data models, reducing the need to build Power BI Aggregate tables and bringing more
consistency to models across the enterprise. In practice, commonly used aggregations should
always be built in Dremio, whereas dashboard-specific analyses can also be built using Power
BI Aggregate tables.

Regardless of whether Power BI Aggregate tables or Dremio aggregated data is used, it is
possible to build or consume multiple Aggregations that align with common aggregation
patterns within a given Power BI Data Model. These aggregations can be configured within

dremio.com 7

https://learn.microsoft.com/en-us/power-bi/connect-data/service-dataset-modes-understand#hybrid-tables
https://docs.microsoft.com/en-us/power-query/power-query-folding


Best Practices for Using Dremio with BI Tools

Power BI such that the optimum table will be selected automatically based on the dimensions
selected within a given Power BI report.

➔ Read more about Power BI Aggregate Tables

Limitations of Power BI’s proprietary DAX language

Frequently, Power BI reports use Power BI’s formula language known as Data Analysis
Expressions �DAX�. When using DirectQuery with DAX, Power BI will typically render and push
down each DAX formula to the data source in serial, which can severely limit the performance
benefits of massively parallel processing engines, like Dremio. Parallelization of these queries
in DirectQuery mode is only available in Power BI Premium.

Essentially, this means that what appears to be a relatively simple Power BI report may push
down many SQL queries in series, so no matter how well the data has been accelerated in
Dremio, it will still perform poorly during both report refresh and report interactions. This is
particularly notable for report interactions such as drill down and filtering, which will resubmit
all the queries to Dremio, meaning that sub-second or even sub-five-second response times
are generally unachievable.

For this reason, Dremio recommends writing most business logic in SQL as part of the
Semantic Layer rather than using a vendor-proprietary language �DAX� in a client application
�Power BI� that makes it difficult or impossible to re-use across use cases and technologies.

Limitations of ODBC and BI tools
Regardless of whether Import or DQ is used, Power BI’s connection to data sources (like
Dremio) will be handled through the ODBC interface. The nature of ODBC dictates that the
data passed from Dremio to Power BI will be transported via a single thread and will require
serialization and deserialization into individual rows. This structure is not ideally suited to
analytical queries, which tend to aggregate over columns. Ultimately, this means that large
volumes of data will take significant time if they are directly ingested by a BI client tool, like
Power BI.

To mitigate these challenges when interacting with potentially huge datasets in your data lake
via Dremio, it is recommended to:
● Select an appropriate level of granularity
● Apply sufficient filtering
● Push necessary aggregations into Dremio’s semantic layer, whenever possible
● Limit the number of columns

dremio.com 8

https://docs.microsoft.com/en-us/power-bi/transform-model/aggregations-advanced


Best Practices for Using Dremio with BI Tools

Row Level Security

When Row Level Security �RLS� is required, the Connection strategy will determine the nature
of its implementation. Since Dremio supports Power BI single sign-on, user permissions can
and should be applied in the central data access layer in Dremio instead of relying on multiple,
possibly inconsistent, access control implementations in various client tools. Whenever the
data is loaded into Power BI using Import or Composite mode, RLS must be applied
dynamically inside Power BI.

➔ Read more about Power BI RLS.

Data type and data model definitions

As a general rule, it is advised to push as much business logic, data filtering, and data type
conversions as possible into the central data layer inside of Dremio so that all client tools and
dashboards can leverage data quality improvements and agree on a single source of truth for
business KPIs.

On a technical level, applying column transformations, like data type changes, inside of Power
BI can also create performance limitations since Power BI frequently creates unconventional
SQL code, which throws off Dremio’s upstream reflection matching algorithm. To identify this
behavior, it is recommended to review the queries that Power BI sends inside Dremio’s job
history and validate whether these conform to the expected style.

Similarly, defining a data model with relationships between tables inside Power BI can create
data consistency issues if these relationships are not verified. For example, setting a
one-to-many relationship between two tables in Power BI assumes that the left-hand table’s
column has unique entries. The BI tool will inevitably produce incorrect query results if that
condition is not met.

dremio.com 9

https://docs.microsoft.com/en-us/power-bi/enterprise/service-admin-rls

