
WHITEPAPER

The Apache Iceberg
Advantage

dremio.com

https://www.dremio.com

2The Apache Iceberg Advantage

dremio.com

What Is a Data Lake Table
Format?
Table formats have evolved to address the need to
efficiently organize and leverage the growing volumes of
data stored in a data lake. Data lakes, initially designed
primarily for cost-effective and scalable storage,
presented a new challenge for data teams: how to
provide streamlined access to the raw data they store.

File formats such as Apache Parquet represented the
first attempt to provide some structure for the data lake,
delivering significant compression and performance
benefits over formats like comma-separated values
(CSV). Table formats build on the advantages of file
formats, providing a structured blueprint that transforms
disparate data files into a cohesive structure that’s
easy to work with for users — a table. It encompasses
essential elements like schema definition, partitioning
strategies, and metadata, giving raw data a sense of
order and accessibility.

One of the hallmark features of table formats is their
ability to facilitate ACID-compliant interactions. ACID
compliance — ensuring atomicity, consistency, isolation,
and durability of data operations — enhances reliability
and integrity. ACID compliance is a foundational
requirement of data warehouses (DW) and relational
database management systems (RDBMS). By adhering
to ACID principles, table formats enable multiple
users to concurrently engage with the data without
compromising data integrity. Table formats act as the
bridge between the raw, unorganized data of data
lakes and the user-friendly, structured data that data
consumers can seamlessly explore and leverage for a
wide range of purposes.

Hive Tables: The First Table Format for
Data Lakes
The Hive table format was created in 2009 (and
introduced via just three short bullet points in a
whitepaper) to allow Facebook employees to write
SQL against Facebook’s internal Hadoop clusters, and
it became the de facto standard within the Hadoop
ecosystem.

In the Hive table format, a table is defined as the entire
contents of one or more directories. For non-partitioned
tables, this is a single directory. For partitioned tables,

which are much more common in the real world, the
table is composed of many directories — one directory
per partition. This mapping of table name to directory/
directories is housed in a metastore such as the Hive
metastore or AWS Glue Catalog.

While its shortcomings started to arise early on,
workarounds were continually used to get around
them, rather than addressing the core problem: data
for a given table was defined as a set of one or more
directories, rather than tracking the individual files like
Apache Iceberg.

Let’s review the challenges faced when using the Hive
table format, rather than a modern table format like
Apache Iceberg.

Challenges of Using the Hive
Table Format
1. Changes to the data are inefficient

Tracking data in a table is done at the directory
level, so users cannot change data at a granularity
lower than a whole directory in a transactionally
consistent way. To solve this, users replicate a
whole partition to a new location behind the scenes,
making updates or deletes during replication, then
updating the partition’s location in the metastore
to the new location. This workaround is inefficient,
especially with large partitions and small and/
or frequent changes to the data, all of which are
common in modern datasets and use cases.

Figure 1: The structure of the traditional de facto standard for data lakes,
the Hive table format

https://www.dremio.com
https://www.vldb.org/pvldb/vol2/vldb09-938.pdf
https://www.vldb.org/pvldb/vol2/vldb09-938.pdf

3The Apache Iceberg Advantage

dremio.com

2. There’s no way to safely change data in multiple
partitions as part of one operation
Because the only transactionally consistent
operation users can do to change data is to swap a
single partition, they can’t change data in multiple
partitions at the same time in a consistent/atomic
way, even something as simple as adding a file to
two partitions.

3. In practice, multiple jobs can’t safely modify the
same dataset
There isn’t a well-adopted method in the Hive
table format to deal with more than one process or
person updating the data at the same time. There is
one method, but it’s restrictive and causes issues so
that only Hive jobs can utilize it. To overcome this,
organizations need to define and coordinate strict
controls on who can write and when or risk data
loss due to concurrent changes in the data.

4. The directory listings required for large tables
take a long time
Tools such as query engines need to get a list of
what files are in all of the partition directories at
runtime, and getting a response generally takes
a long time. In one notable instance, Ryan Blue,
the co-creator of Iceberg at Netflix, shared an
example where it took over 9 minutes just to
plan a query due to the directory listings. High-
performance query engines such as Dremio cache
these directory listings, and the system refreshes
these caches regularly to ensure that queries can
process the latest data. That said, the cost and
administrative burden of the metadata cache are a
challenge for some organizations as well.

5. Because file maintenance is inefficient and
difficult, costs can be much higher than needed
Trade-offs are inherent to data processing, and
many of these trade-offs can lead to suboptimal
file sizes for tables. This is known as the small files
problem, where the cost to read a set amount of
data grows as you increase the number of files the
data is stored in, both in terms of performance and
monetary cost in the cloud. Data teams can correct
file sizes after the fact, but because changes in
Hive are inefficient and difficult, they often are not
made. In one example, Insider was able to reduce
overall costs by 90% with Apache Iceberg by
addressing the small files problem.

6. Users have to know the physical layout of the table
If a table is partitioned by when an event occurred,
it is often done via multi-level partitioning: first
by the event’s year, then by the event’s month,
then by the event’s day, and sometimes even finer
granularity. But when a user is presented with
events, the intuitive way to query the events after a
certain point in time looks like: WHERE event_ts >=
‘2023-05-10 12:00:00’. In this situation, the query
engine does a full table scan, which takes much
longer than if the available partition pruning was
done to limit the data.

This full-table scan happens because there is no
mapping from the event’s timestamp familiar to
the user (2023-05-10 12:00:00) to the physical
partitioning scheme (year=2023, then month=05,
then day=10).

Instead, all users need to be aware of the
partitioning scheme and write their query as:
WHERE event_ts >= ‘2023-05-10 12:00:00’ AND
event_year >= ‘2023’ AND event_month >= ‘05’
AND (event_day >= ‘10’ OR event_month >= ‘06’).
(Note: this partition-pruning query gets even more
complicated if you were to look at events after May
of 2022 instead.)

7. Hive table statistics are usually stale
Table statistics are gathered in an asynchronous
periodic read job; therefore, the statistics are
often out of date. Furthermore, gathering these
statistics requires an expensive read job that results
in significant scanning and computation, so these
jobs run infrequently, if ever. Consequently, some
engines disregard stats for Hive tables altogether.

8. The filesystem layout has poor performance on
cloud object storage
Any time a user needs to read a lot of data, cloud
object storage (e.g., S3, GCS) architecture dictates
the reads should have as many different prefixes as
possible, so they get handled by different nodes in
the cloud object storage backend. However, since
all data in a partition in the Hive table format has
the same prefix and users generally read all of the
data in a partition (or at least all of the Parquet/ORC
footers in a partition), all of the read requests hit
the same cloud object storage node, reducing the
performance of the read operation.

https://www.dremio.com
https://youtu.be/nWwQMlrjhy0?t=138
https://youtu.be/nWwQMlrjhy0?t=138
https://medium.com/insiderengineering/apache-iceberg-reduced-our-amazon-s3-cost-by-90-997cde5ce931

4The Apache Iceberg Advantage

dremio.com

Enter Apache Iceberg
Netflix ran into several of these challenges with the
Hive table format and, after implementing all the usual
workarounds, realized that the core issue was the Hive
table format itself. The fundamental problem came
down to the fact that the Hive table format tracks what

data is in a table at the folder level. If they tracked what
data was in a table at the file level instead, knowing
exactly which files made up a table, it would resolve
many of the challenges and lay the foundation for
additional useful capabilities.

Apache Iceberg Capabilities
Let’s review the core capabilities Iceberg provides:

1. ACID transactions
Apache Iceberg leverages optimistic concurrency
control to provide ACID guarantees for transactions
across multiple readers and writers. This ensures
that transactions either fully succeed or fail. Apache
Iceberg’s snapshot-based ACID compliance enables
atomic transactions on tables, safeguarding against
potential data loss and ensuring readers see a
completely consistent view of the table.

2. Time-travel
Apache Iceberg offers immutable snapshots,
preserving the historical state of tables and
enabling what is often referred to as time-travel.
This feature allows you to query the table’s state
at specific points in the past, aiding tasks such as
end-of-quarter reporting or re-creating the output
of a machine learning model at a certain moment
in time. With this capability, there’s no need to
duplicate the table’s data to a separate location,
enhancing both efficiency and accuracy.

3. Version rollback
Apache Iceberg’s version rollback capabilities
provide a flexible and resilient approach to
managing table states. If an error or undesired
change occurs, you can effortlessly roll back the
table to a prior state. This “undo” functionality
simplifies error recovery and enhances the
robustness of data management, making it a
valuable feature for maintaining data integrity and
consistency.

4. Easy and safe schema evolution
Apache Iceberg’s schema evolution capabilities
allow for seamless and consistent alterations to
the data structure. You can make changes to the
table schema without affecting the existing data
or requiring a complete rewrite of the table. This
flexibility facilitates tasks such as adding new
fields or modifying existing ones to keep pace with
changing business requirements. Unlike traditional
methods that can lead to inconsistencies or
substantial downtime, Iceberg ensures that schema
modifications are implemented efficiently and
without disruption, maintaining the integrity and
usability of the data.

Figure 2: On the left, the Hive table format tracks what directories make up a table. On the right, the Apache Iceberg table format tracks what
files make up a table. Diagram is simplified.

https://www.dremio.com
https://en.wikipedia.org/wiki/Optimistic_concurrency_control
https://en.wikipedia.org/wiki/Optimistic_concurrency_control

5The Apache Iceberg Advantage

dremio.com

5. Partition evolution
Apache Iceberg enables simple and easy
management of partitioning changes, addressing a
previously complex and costly process. In the past,
altering partitioning could necessitate rewriting
the entire table, but Iceberg allows updates to
the partitioning method without this rewrite. If
desired, parts of the table can still be rewritten
to a new partitioning scheme, but the process is
far simpler. Since these changes are closely tied
to metadata, adjustments to the table’s structure
are both efficient and economical. This capability
streamlines the task of keeping partitioning aligned
with evolving requirements, reducing both time and
expense.

6. Hidden partitioning
Apache Iceberg’s hidden partitioning feature
addresses a common issue where users don’t
know how a table is physically partitioned.
Traditional partitioning in the Hive table format,
as described earlier, is based on the different
parts of a timestamp and often leads to queries
that accidentally result in full table scans. This
drastically reduces the query’s performance and
increases the query’s cost. Iceberg’s approach to
partitioning resolves this by allowing the definition
of the column on which physical partitioning is
based, along with an optional transformation, such
as bucket, truncate, year, month, day, or hour. As
a result, users can write more intuitive queries that
naturally benefit from partitioning without needing
to add extra filter predicates on specific partitioning
columns. This approach simplifies the querying
process and improves overall efficiency.

7. Object storage layout
Iceberg addresses the performance problems of
the file layout on object storage by abandoning the
traditional file layout approach to instead rely on a
list of files within its metadata structure. This means
the actual data files themselves don’t need to be
in any particular location, as long as the manifest
files list the right location for that file. This allows
Apache Iceberg to use traditional file layouts on
systems like HDFS and use alternative file layouts
like including randomized prefixes on object storage
for better scaling and performance.

8. Data optimization
Iceberg provides data optimization capabilities to
improve the performance of operations that work
with the data.

One example is compaction, where data files can
be rewritten to an optimal size while still providing
consistency and without interrupting usage of the
table. This is a simple solution to the small files
problem.

Another example is optimizing the layout of the
data. This can be done via a simple process of
sorting the data at the time of writing or a more
complex sorting process called z-order, which helps
optimize queries even when only the second field,
in a table sorted by multiple fields, is used in the
query.

9. Multiple ways to update and delete data
Apache Iceberg provides three ways to update and
delete data: copy-on-write, merge-on-read with
positional deletes, and merge-on-read with equality
deletes. There are trade-offs for each strategy, so
selection depends on the situation. There’s a default
that works well, but you can easily change the
strategy. You can learn more about these strategies
and when to use which here.

Apache Iceberg Benefits
Iceberg’s capabilities bring many benefits to your data
ecosystem:

1. Cost reduction
With Iceberg, it’s much easier, and therefore more
common, to be able to lower both your object
storage read costs and your compute costs, thanks
to Iceberg making file organization and optimization
much easier. For example, after migrating from
the Hive table format to Apache Iceberg, Insider
revealed they were able to cut their S3 costs by
90% and their EC2 and EMR costs by 20%.

2. Improved performance and efficiency
Apache Iceberg makes many data operations
more performant and efficient through use of its
capabilities:

○ Updating data is more performant and efficient

https://www.dremio.com
https://www.dremio.com/blog/compaction-in-apache-iceberg-fine-tuning-your-iceberg-tables-data-files/
https://www.dremio.com/blog/compaction-in-apache-iceberg-fine-tuning-your-iceberg-tables-data-files/
https://www.dremio.com/blog/row-level-changes-on-the-lakehouse-copy-on-write-vs-merge-on-read-in-apache-iceberg/
https://medium.com/insiderengineering/apache-iceberg-reduced-our-amazon-s3-cost-by-90-997cde5ce931
https://medium.com/insiderengineering/apache-iceberg-reduced-our-amazon-s3-cost-by-90-997cde5ce931

6The Apache Iceberg Advantage

dremio.com

from a compute, people, process, and time
perspective because you no longer need to
duplicate an entire partition to change a subset
of the data in it thanks to Iceberg’s lightweight
ACID transaction capability.

○ Taking a snapshot of a table is much more
efficient, thanks to Iceberg’s time-travel and
tagging capabilities.

○ Fixing mistakes made to a table is much more
efficient, thanks to Iceberg’s time-travel and
version rollback capabilities.

○ Querying data is more performant and efficient
from a compute and time perspective since their
queries:

- Leverage partitioning where possible, without
them having to know how the table is physically
structured, thanks to Iceberg’s hidden
partitioning

- Read less data when a table has multiple fields
get filtered on independently, thanks to Iceberg’s
z-order sorting

- Don’t need to do a listing of the folders to get
the list of files at runtime, which can be slow
especially at scale – rather the engine can read
a comparatively small set of files it knows the
path for to retrieve the full list of files – thanks to
Iceberg tracking the individual files

- Don’t hit object storage rate limiting when
reading large tables and/or partitions, thanks to
Iceberg’s object storage layout

3. Guaranteed data consistency
When modifying data in a table, any changes
that are made follow ACID properties, even when
multiple people from different engines are making
changes to the same table at the same time.
Snapshot isolation enables users to read a table
while someone else makes changes, and neither will
see the other’s changes if a commit isn’t made by
the time a read is initiated.

4. Iceberg makes it easy for tables to respond to
business changes
Object storage layout and partition evolution
eliminate the risk of performance degradation as
data volumes grow. Schema evolution dramatically
reduces the risk and impact of schema changes.
Finally, Iceberg enjoys broad ecosystem support for
both reads and writes (Dremio, Spark, Flink, Trino,
Athena, BigQuery, and many others), so data teams
who choose Iceberg can leverage the broadest set
of data tools.

Real-World Usage of Iceberg
Apache Iceberg is rapidly becoming the go-to solution
for large-scale data management and analytics across
industries. Leveraging its flexibility, scalability, and
performance, companies are finding useful ways
to streamline their data workflows and enhance
analytic capabilities. Here are some resources from
organizations that have shared their experiences and
insights on how they have integrated Iceberg into their
systems to meet their specific needs:

• Bilibili – How Bilibili Builds OLAP Data Lakehouse
with Apache Iceberg

• Pinterest – Scaling Row-Level Deletions at
Pinterest

• Insider – How We Migrated Our Data Lake to
Apache Iceberg

• Apple – Lakehouse: Smart Iceberg Table Optimizer

• SK Telecom – Journey to Iceberg with Trino

• Orca Security – Orca Security’s Journey to a
Petabyte-Scale Data Lake with Apache Iceberg
and AWS Analytics

https://www.dremio.com
https://medium.com/@lirui.fudan/how-bilibili-builds-olap-data-lakehouse-with-apache-iceberg-9f3408e53f9
https://medium.com/@lirui.fudan/how-bilibili-builds-olap-data-lakehouse-with-apache-iceberg-9f3408e53f9
https://www.youtube.com/watch?v=OpXOtIrIuM4&list=PL-gIUf9e9CCvyZXhtrSOFPNxFh9FkZ8b8&index=8
https://www.youtube.com/watch?v=OpXOtIrIuM4&list=PL-gIUf9e9CCvyZXhtrSOFPNxFh9FkZ8b8&index=8
https://medium.com/insiderengineering/how-we-migrated-our-production-data-lake-to-apache-iceberg-4d6892eca6e6
https://medium.com/insiderengineering/how-we-migrated-our-production-data-lake-to-apache-iceberg-4d6892eca6e6
https://www.youtube.com/watch?v=r7KJf8F585Q&list=PL-gIUf9e9CCvyZXhtrSOFPNxFh9FkZ8b8&index=7
https://trino.io/blog/2022/12/19/trino-summit-2022-sk-telecom-recap
https://aws.amazon.com/blogs/big-data/orca-securitys-journey-to-a-petabyte-scale-data-lake-with-apache-iceberg-and-aws-analytics/
https://aws.amazon.com/blogs/big-data/orca-securitys-journey-to-a-petabyte-scale-data-lake-with-apache-iceberg-and-aws-analytics/
https://aws.amazon.com/blogs/big-data/orca-securitys-journey-to-a-petabyte-scale-data-lake-with-apache-iceberg-and-aws-analytics/

7The Apache Iceberg Advantage

Summary
As you’ve seen, the transition from Hive table format to Apache Iceberg is not just an upgrade; it’s a paradigm shift
that addresses the core inefficiencies and limitations inherent in traditional data lake table formats. Iceberg offers
a robust set of capabilities — from ACID transactions and time-travel to hidden partitioning and optimized object
storage layout — that not only resolve the challenges posed by Hive tables but also introduce new functionalities
that are critical for modern data operations. Organizations that have made the switch report substantial benefits,
including reductions in storage and compute costs, improved performance, improved data consistency, and the
flexibility to adapt to changing business requirements.

As data continues to grow in volume, variety, and velocity, the need for a scalable, efficient, and reliable table format
becomes increasingly urgent. Apache Iceberg is not just an alternative to Hive; it’s the next evolutionary step for
data lakes. Adopting Iceberg is not merely a technical decision but a strategic move that will future-proof your data
infrastructure, optimize costs, and unlock new capabilities for data-driven decision-making.

Dremio and the Narwhal logo are registered trademarks or trademarks of Dremio, Inc. in the United States and other countries. Other brand names mentioned herein are for identification
purposes only and may be trademarks of their respective holder(s). © 2023 Dremio, Inc. All rights reserved.

A B O U T D R E M I O
Dremio is the easy and open data lakehouse, providing self-service analytics with data warehouse functionality and data lake
flexibility across all of your data. Use Dremio’s lightning-fast SQL query service and any other processing engine on the same
data. Dremio increases agility with a revolutionary data-as-code approach that enables Git-like data experimentation, version
control, and governance. In addition, Dremio eliminates data silos by enabling queries across data lakes, databases, and data
warehouses, and by simplifying ingestion into the lakehouse. Dremio’s fully managed service helps organizations get started with
analytics in minutes, and automatically optimizes data for every workload. As the original creator of Apache Arrow and committed
to Arrow and Iceberg’s community-driven standards, Dremio is on a mission to reinvent SQL for data lakes and meet customers
where they are on their lakehouse journey.

https://www.dremio.com
https://www.dremio.com

