
Dremio Software

RebalanceWorkload
Management Rules

Introduction

Dremio services many varieties of query complexity. Observations on Dremio usage suggest that 80%
of all queries are low or medium complexity, while the rest are complicated. Dremio uses query cost to
evaluate this complexity and then directs the queries to appropriate queues based on query cost.

A newly installed Dremio defaults to using a query cost of 30000000 as a rule to govern routing queries
to queues. So anything below this value goes to low cost queues, and anything higher goes to the high
cost queue. That amount is somewhat arbitrary and should be evaluated against actual queries as soon
as practical. Additionally, different environments and versions can affect the query cost. Therefore,
Workload Management Rules should be re-evaluated after every upgrade, migration to new
environments, and change to workload composition.

Down the line, Business users start using Dremio and execute various queries with different query
costs. So, there comes a need to re-evaluate the distribution of query cost based on actual query data.

This document discusses the steps to

● Re-evaluate the threshold query cost based on usage
● Update the queues with the newly evaluated threshold query cost in an automated way.

dremio.com

Reblance Workload Management Rules

RebalanceWorkload

Dremio stores all time statistics and cost inside the “Queries.json” file for every query executed. The
default location of “Queries.json” is inside the $DREMIO_HOME/log folder on each coordinator node.
This file is automatically moved to the archive folder at the end of the day or once the file size crosses a
threshold, whichever happens earlier. For optimal analysis, all historical queries.json files should be
saved and archived.

For a 2-queue set-up, queries having queryCost below the 80th percentile should go to the low-cost
user queries queue. The remaining ones go to the high-cost user queries queue. For a 3-queue set-up,
base the distribution on the 50th and 80th percentiles, where queries having a queryCost below the
50th percentile go to the low-cost user queries queue, queries having a queryCost greater than the 50th
percentile and below the 80th percentile go into the medium-cost user queries queue and queries
having a queryCost greater than the 80th percentile go to the high-cost user queries queue.

The below sections discuss rebalancing the workload based on a single-engine or a multi-engine setup.

Single Engine
The diagram below shows the set-up of the default queues for a single engine installation.

● Copy “Queries.json” for at least 30 days from the Dremio server to a local folder
● Get the query cost below which 80% of the queries selected in the above step reside. Technically, it’s

80th percentile
● Use the threshold value collected in the above step to tune your WLM queue rules. This can also be

done programmatically by calling the API PUT /api/v3/wlm/rule. More details here:
https://docs.dremio.com/current/reference/api/wlm/rule/#creating-or-updating-a-rule

dremio.com 2

https://docs.dremio.com/current/reference/api/wlm/rule/#creating-or-updating-a-rule

Reblance Workload Management Rules
Multiple Engines

In many cases, Dremio is configured to have multiple engines, with each engine having a different set of
executors. A widespread use case is to have engines created to handle queries by User Groups. So all
queries from the “Sales” user group go to Engine 1, and those of the “Production” user group go to
Engine 2.

Each engine can be associated with a different set of queues. As in the example shown above, Queues
1,2 & 3 are associated with Engine1. While queues 4 & 5 are associated with Engine 2 and so on.

So, for the above configuration, sample queue rules at the initial stage, would be:

dremio.com 3

Query 1 High Cost Query is_member('Sales') AND query_cost() > 30000000

Query 2 Medium Cost Query is_member('Sales') AND query_cost() > 20000000 AND query_cost() <= 30000000

Query 3 Low Cost Query is_member('Sales') AND query_cost() <= 20000000

Query 4 High Cost Query is_member('Production’') AND query_cost() > 30000000

Query 5 Low Cost Query is_member('Production') AND query_cost() <= 30000000

Query 7 High Cost Reflections query_type() = 'Reflections' AND query_cost() > 30000000

Query 8 Low Cost Reflections query_type() = 'Reflections' AND query_cost() <= 30000000

Reblance Workload Management Rules

For this scenario, there is a need to tune the queues per engine. For example, to tune the queues for
Engine 1, one must find all queries that went to Engine 1. Then, we need to find the 50th and 80th
percentile query costs for those queries and update the queue rules for these queues accordingly.

Similarly, one needs to find the 80th percentile query cost for all queries executed in Engine 2. One must
update the queue rules for Queues 4 & 5 using that percentile value.

The same approach to be taken to tune queues 6 & 7.

Automated Load Balancing
Taking Engine 1 as example, below steps can be used for automated tuning:

● Copy “Queries.json” for at least 30 days from the Dremio server to a local folder. The queue

associated with a query is mentioned in this file. However, the engine name is not available in this

data set

● To get the engine name associated with a queue, call the API GET /api/v3/wlm/queue

More details on

https://docs.dremio.com/current/reference/api/wlm/queue/#retrieving-all-queues

Store all the queues associated with each engine from this data set

● Get all the queries that got executed on a particular engine by joining data gathered from the

above 2 steps using the queue name as join condition. For our example, all queries that ran on

Engine 1 will be selected for further processing.

● Select only those queries collected from the above step that meets the criteria below:
'requestType' belongs to ["RUN_SQL","EXECUTE_PREPARE"]) AND
'outcome' == "COMPLETED") AND
'queueName' != "UI Previews") AND
'queryCost' > 10

● Now get the 50th and 80th percentile query costs using the NTILE function against the

queryCost column. Use these percentiles to update the queue rules using API PUT

/api/v3/wlm/rule. More details here:
https://docs.dremio.com/current/reference/api/wlm/rule/#creating-or-updating-a-rule

The Same approach should be followed for Engine 2 & 3 as well.

dremio.com 4

https://docs.dremio.com/current/reference/api/wlm/queue/#retrieving-all-queues
https://docs.dremio.com/current/reference/api/wlm/rule/#creating-or-updating-a-rule

Reblance Workload Management Rules

Conclusion

As users execute queries on the Dremio platform, the rules defined for queue routing may need to be
updated. To enable Dremio to continue to efficiently handle the workload, the query cost threshold has
to be evaluated at periodic intervals based on queries serviced and potentially updated as necessary.
This document provides Dremio users with all the necessary steps to automate re-computation and
update the queue rules based on usage patterns.

dremio.com 5

