
Dremio Software

Operating Dremio
Runbook

Introduction
This guide provides details of the tasks to periodically complete to maintain an operationally healthy
Dremio cluster. The document is divided into infrastructure operations and use case/semantic layer
operations. Each section contains a set of tasks. For each task there is information about what the task
is, why it is important, and what could happen if you do not complete it. The document is intentionally
not focused on how to complete each task; for that there are appropriate links in the text to further
reading material and guides.

dremio.com



Operating Dremio Runbook

Infrastructure Operations Tasks
This section presents the infrastructure-related activities a Dremio operative needs to perform
regularly. The infrastructure activities are common across multiple use cases that share a
common Dremio cluster. The table below summarizes Dremio’s recommended cadence for
completing each activity. Please refer to the relevant subsections for further details on each
activity.

Activity Frequency Method

Upgrade Dremio Major Version Yearly Follow upgrade steps for the
infrastructure Dremio is installed on

Patch Dremio Minor Version Quarterly Follow upgrade steps for the
infrastructure Dremio is installed on

Hotfix Dremio As required Follow upgrade steps for the
infrastructure Dremio is installed on

Backup KV Store Daily dremio-admin backup on CRON
schedule

Backup Non-KV Store resources Daily Needs script and CRON schedule

Clean KV Store 6-monthly once over 100GB dremio-admin clean

Test restore of KV Store from
backup

monthly dremio-admin restore

Evaluate the number of scale-out
coordinators

Monthly as standard, or twice
daily after notable events

Analyze query history using Dremio.
The query history is in queries.json

Evaluate the number of executors Monthly as standard, or twice
daily after notable events

Analyze query history using Dremio.
The query history is in queries.json

Evaluate Cluster/Engine Sizing Semi-annually Perform load tests and then analyze
the results in queries.json using
Dremio

Monitor Dremio cluster health Real-time Analyze JMX metrics and alert
appropriately

dremio.com 2

https://docs.dremio.com/current/admin/cli/backup/
https://docs.dremio.com/current/admin/cli/metadata-cleanup/data-cleanup/
https://docs.dremio.com/current/admin/cli/restore/


Operating Dremio Runbook

Major Release Upgrades, Minor Release Patches and Hotfixes

Periodically, Dremio will create new major releases of Dremio Software to introduce new
features and functionality and valuable updates to the product. It is recommended on
approximately a yearly basis to ensure that you upgrade to some version of Dremio’s major
release number.

In addition, on approximately a quarterly basis, Dremio will create minor releases, known as
patches, to introduce minor features, improve existing functionality and fix issues in a major
release. It is sensible to stay no more than a couple of patch releases behind the most recent
patch release, ensuring you remain well within the boundaries of the supported releases.

On an ad-hoc basis, Dremio may also introduce hotfixes to address immediate critical issues
identified in the product; an example of this could be a hotfix to resolve a security vulnerability.
Dremio typically releases Hotfixes for several recent patch versions, so when this happens
Dremio recommends you install the hotfix that is most closely associated with the patch
version of Dremio that you currently use.

Whether upgrading to a new major release version or applying a patch to your current major
version, the process for performing the upgrade/patch is identical; the process only differs
depending on which infrastructure Dremio is installed on.

● For Kubernetes upgrade steps you can refer to here.
● For Standalone or YARN-based upgrade steps using the rpm file refer to here.
● For Standalone or YARN-based upgrade steps using the tarball file refer to here.

For AWSE upgrades, the process is slightly different. You need first to stop the project in your
current AWSE environment. Then you need to start up a new AWS Edition environment again
from the AWS Marketplace, but this time choose the version of Dremio you are upgrading to.
Once you have launched Dremio from the Marketplace, you can open your existing project in
the new Dremio version.

You must upgrade Dremio on the cadences recommended above to stay within the range of
supported versions; failing to do this puts you at risk of Dremio Support being unable to assist
with issues that may arise. The list of currently supported Dremio versions is available here.

Be sure to incorporate upgrades into your overall Dremio operations strategy.

dremio.com 3

https://github.com/dremio/dremio-cloud-tools/blob/master/charts/dremio_v2/docs/administration/Upgrading-Dremio.md
https://docs.dremio.com/current/get-started/cluster-deployments/deployment-models/standalone/standalone-rpm/#upgrading-dremio
https://docs.dremio.com/current/get-started/cluster-deployments/deployment-models/standalone/standalone-tarball/#upgrading-dremio
https://docs.dremio.com/current/get-started/cluster-deployments/deployment-models/amazon-deployments/aws/admin/aws-edition-stop/
https://docs.dremio.com/current/get-started/aws-edition-quickstart/#deploy-dremio-on-aws
https://docs.dremio.com/current/get-started/cluster-deployments/deployment-models/amazon-deployments/aws/admin/aws-edition-start/
https://www.dremio.com/legal/dremio-supported-software/


Operating Dremio Runbook

Backup KV Store

During regular operation Dremio stores essential metadata in a metastore local to the Master
coordinator node; we refer to this metastore as Dremio’s KV Store.

For customers with Iceberg metadata enabled, Dremio stores additional metadata for all
parquet and iceberg datasets in the distributed storage area of the data lake.

Dremio recommends that every organization ensures daily backups of the Dremio Production
KV store are taken. Dremio metadata related to all objects created in the semantic layer (e.g.,
data sources, PDS, VDS, reflections, wiki, tags, scripts etc.), profiles for executed jobs and
user-uploaded files can be backed up.

Note: It is not currently possible to back up the iceberg metadata in the distributed store.

Automated KV Store backups can be set up as a CRON job on most non-kubernetes
environments and Dremio recommends taking nightly backups. However, the frequency often
depends on any RTO or RPO objectives an organization might have. For example, if the RPO is
to have data as fresh as yesterday, then you’d need a daily backup, but if the RPO is to have it
as fresh as last week, then a weekly backup may suffice.

Performing backups requires using the dremio-admin backup CLI command, which ships with
Dremio. The official documentation states instructions for executing the dremio-admin backup
commands in isolation on non-kubernetes clusters.

For details on how to perform backups on kubernetes environments, please refer to the
following official documentation. Please note that the dremio-admin backup command must be
run while Dremio is online and the command must be executed on the master-coordinator pod
and NOT the Dremio Admin pod.

You can automate backups in kubernetes environments by creating a CronJob container to
execute the relevant kubectl exec command. Details of setting up kubernetes CronJob for
backups can be found in the Dremio-published Backing up and Restoring Dremio white paper.

In the event of a catastrophic failure, if there is no available backup, then this might result in
the need to reinstall your entire Dremio cluster and manually recreate the entire semantic layer
without any previous reference to the objects in the environment.

dremio.com 4

https://docs.dremio.com/current/admin/cli/backup/
https://docs.dremio.com/current/get-started/cluster-deployments/deployment-models/azure-deployments/azure-aks/aks-admin/#backup


Operating Dremio Runbook

Backup Non-KV Store Resources

The KV Store backup mentioned in the previous section does not include the contents of the
distributed store, such as iceberg metadata, acceleration cache, downloaded files and query
results, nor does it include configuration files from the <dremio_home>/conf folder, any keytab
files or certificate stores, logs from the <dremio_home>/logs folder or any installed community
connectors.

Of these items, the ones that Dremio recommends you backup separately daily are the
contents of the /conf folder and any files that do not form part of the standard install, such as
the keytab files, certificates and community connector jar files. Logs can be helpful as backups
for historical reference, but they are not critical resources for cluster restoration.

These files are as critical to restoring a Dremio cluster as the data in the KV Store since the
/conf folder contains some useful configuration information, the keytab files and certificates
contain the keys for facilitating secure communications with client tools and intra-cluster
nodes and the community connector facilitate connections to community-supported data
sources.

Automated nightly file backups can be set up using a combination of a CRON job and a script
to perform the file copies.

With regards to Iceberg metadata, there is no benefit to backing this up since Iceberg files
contain many internal references to absolute file paths. If you copy the Iceberg metadata from
the distributed storage into another distributed storage location, everything breaks because of
the absolute path references. So the only time you could re-use the Iceberg metadata when
restoring a Dremio cluster is if the distributed store location of the new cluster is EXACTLY the
same as the distributed store location of the Dremio cluster from which the backup was taken.
If the distributed store location differs in the restored Dremio cluster, users must refresh the
metadata for all Parquet data sets.

Clean KV Store

Over time, as data is added and removed in conjunction with the changes made in the
semantic layer, the KV store can become fragmented and thus bloated in size. Dremio
recommends a regular clean of the KV Store every six months once it reaches 100GB in size to
avoid this becoming a significant issue.

The clean operation will delete any orphaned metadata entries (excluding parquet, ORC
read-only and AVRO whose metadata is stored in distributed storage), orphaned profiles, old

dremio.com 5



Operating Dremio Runbook

jobs, old profiles and temporary dataset versions. It also re-indexes the data and compacts it
to reduce the fragmentation on disk.

If the clean operation is not performed every six months once it is over 100GB in size, then this
can cause a slowdown in metadata retrieval for non-parquet datasets, affecting the planning
time of queries.

The clean operation is performed using Dremio’s in-build dremio-admin clean CLI command.
Please note that you must completely shut down ALL cluster nodes (coordinators and
executors) before running this command. It is also recommended to take a cluster backup
before running the command.

This link details the flags required when using dremio-admin clean to clean the KV store in
non-kubernetes environments.

In kubernetes environments, the command must be run in the Dremio Admin pod while Dremio
is in offline mode, meaning Dremio must not be running.
Details of how to start the Dremio Admin pod and run the dremio-admin clean command are
documented here.

Test Restore of KV Store from Backup

Dremio recommends testing the backups being created every month by importing them into a
temporary environment. This will ensure that if a disaster hits the Dremio production server,
you know you have a working backup you can restore into a new Dremio environment. The
Dremio environment that a KV Store backup is restored into MUST be the same version of
Dremio as the backup was originally taken from, therefore be careful to note the version of
your Dremio Production environment and also note what the new version is if you upgrade it.

Please note there is no means to successfully backup and restore the acceleration folder in the
distributed storage, which means after the metadata and all other backed-up files, such as the
contents of the /conf folder, keytabs, certificates and community connector jars have been
restored all of the reflections will need to be refreshed. The reflections can be refreshed via
the Dremio UI or the catalog /refresh REST API call.

Failure to regularly test the restoration from a backup can, at worst, cause the loss of any
recent functioning backup, leading to the possibility of forfeiture of your entire Dremio cluster.
Dremio has experienced a situation where daily backups were corrupted due to a failure during
the writing of the backup, caused by changes in folder access permissions by an administrator
on the Dremio Coordinator node. Since nobody cared to test the backups periodically, the

dremio.com 6

https://docs.dremio.com/current/admin/cli/metadata-cleanup/
https://docs.dremio.com/current/get-started/cluster-deployments/deployment-models/azure-deployments/azure-aks/aks-admin/#clean-restore-and-set-password
https://docs.dremio.com/current/reference/api/catalog/table/#refreshing-a-table


Operating Dremio Runbook

problem went unnoticed. Only when a restore was required in the production environment did
the customer realize they hadn’t had a historical working backup for over four months.

The restore operation is performed using Dremio’s in-build dremio-admin restoreCLI
command. This link provides details of the various flags and steps that are required when using
dremio-admin restore.

In kubernetes environments, the command must be run in the Dremio Admin pod while Dremio
is in offline mode, meaning Dremio must not be running.
Details of how to start the Dremio Admin pod and run the dremio-admin restore command
are documented here.

Evaluate Number of Secondary �Scale-Out) Coordinators

Secondary coordinator nodes can be used in Dremio to improve query planning concurrency
and distribute query planning specifically for ODBC and JDBC client requests. Secondary
coordinator nodes do not plan queries that arrive via Dremio’s SQL REST API.

It is very common for Dremio to experience a natural ramp-up of workloads as new users and
new use cases are added to the cluster. When the volume of queries submitted to Dremio
exceeds the number of cores that Dremio has available to plan the queries, those queries that
cannot immediately be planned start to incur wait time; this is time spent waiting in a queue to
be planned. Wait time increases the overall time an end user experiences waiting for the query
to execute and return results.

To alleviate this, if the issue is caused by high volumes of queries from ODBC/JDBC clients, it is
possible to set up secondary coordinators to improve the query planning concurrency and to
distribute query planning for ODBC/JDBC clients across multiple coordinators.

You can follow the steps defined here to enable this feature for standalone, YARN-based, or
Kubernetes deployments. Please note that secondary coordinators are not supported in AWSE
deployments.

The indicator that you should start to consider adding a secondary coordinator is when your
JDBC/ODBC queries submitted to Dremio start to incur small amounts of pool wait time �1
second of wait time is too much for many organizations), failing to address this will result in
end users experiencing increased query durations as more and more workload gets added to
Dremio. The wait time for each query is captured in the query history. That query history is
stored in queries.json on the Dremio Master Coordinator in Dremio Software.

dremio.com 7

https://docs.dremio.com/current/admin/cli/restore/
https://docs.dremio.com/current/get-started/cluster-deployments/deployment-models/azure-deployments/azure-aks/aks-admin/#clean-restore-and-set-password
https://docs.dremio.com/current/get-started/cluster-deployments/customizing-configuration/dremio-conf/nodes-config/#secondary-coordinator-nodes
https://docs.dremio.com/current/get-started/cluster-deployments/customizing-configuration/dremio-conf/nodes-config/#secondary-coordinator-nodes


Operating Dremio Runbook

Dremio recommends that you check on the wait times of your queries approximately once per
month as standard or a couple of times a day for one week after notable events such as a new
workload being placed into production or a significant increase in the number of users being
given access to Dremio occurs.

Dremio also recommends a maximum of five secondary coordinator nodes in any cluster.

Evaluate Number of Executors

Monthly as standard, but as frequently as twice per day after notable events such as a new
workload being added or removed in production or a significant increase\decrease in the
number of users being given access to Dremio has occurred, you should analyze the query
history to determine if a change in the number of executors in our engines is necessary. That
query history is stored in a file on the Dremio Master Coordinator called queries.json in Dremio
Software.

When the volume of queries being simultaneously executed by the current set of executor
nodes in an engine starts to reach a saturation point, Dremio exhibits several key symptoms.
One of the most significant symptoms is increased sleep time during query execution; sleep
time is incurred when a running query needs to wait for available CPU cycles due to all
available CPUs being in operation.

Another symptom in Dremio Software is an increased number of Out Of Memory exceptions
occurring, even on queries that are not particularly heavy memory consumers; if a query uses a
very small amount of memory but needs a tiny bit more, if the request for that tiny bit more
memory pushes Dremio over its limit, then that small query will be marked as Out Of Memory
since it was the one that requested memory and it couldn't be allocated. Seeing these types of
Out Of Memory exceptions indicates that the engine cannot handle the concurrency allowed
by the queue settings.

These symptoms can be identified by analyzing the query history, which reports on sleep time
and reasons why queries fail.

Failure to address these symptoms can result in increasing query times and an increasing
number of queries failing due to Out Of Memory issues, leading to a bad end-user experience
and poor satisfaction.

In both circumstances, in a cluster that supports engines, you can alleviate the issue by adding
executor nodes to an existing engine or creating a new engine, then altering the Workload

dremio.com 8



Operating Dremio Runbook

Management settings to use the engine changes. Bear in mind that queries cannot be
executed across multiple engines.

Dremio has a best practice stating no engine should exceed ten executor nodes, assuming
128GB of memory and 16/32 cores per executor.

A good reason for creating a new engine is if a new workload gets introduced to Dremio,
perhaps by a new department within an organization, and their queries are causing the existing
engine setup to decrease in performance. Creating a new engine to isolate the new workload,
most likely by creating rules to route queries from users in that organization to the new engine,
is a useful way of segregating workloads.

In a standalone cluster, you can easily add nodes to the overall cluster. Dremio allocates
queries to nodes based on how much memory is allocated to the various queues. You can set a
new node as an executor in standalone deployments by editing the dremio.conf file, as
described here.

As described here, you can configure new engines on-demand from the Dremio UI in
YARN-based deployments.

In Kubernetes deployments, you can either add extra individual executors, add more executors
to existing engines, or create new engines with however many executors you require. Of
course, the requirement here is that your configured node pools for your Kubernetes cluster
have enough available nodes. This page describes how to alter the number of standard
executors, it is related to Amazon EMS but the steps apply to all flavors of Kubernetes. You can
add engines to the values.yaml file by adding an engine name to the engines array inside the
executor section and then creating an engineOverride section with the various engine
settings; this is described in the Permanently Scaling Coordinators and Executors section here.

Cluster Sizing

Dremio recommends performing a cluster sizing exercise twice yearly to gauge whether the
production cluster is sized correctly for its current workload and how much concurrency
expansion the cluster could handle if the current workload increased. A cluster sizing exercise
cannot be used to gauge how much more capacity a cluster might need for workloads that
aren’t already present in Dremio; it is based purely on existing workloads.

A typical cluster sizing exercise involves gathering a representative set of 50�100 queries from
the production cluster and using some load testing framework to send those queries into

dremio.com 9

https://docs.dremio.com/current/get-started/cluster-deployments/customizing-configuration/dremio-conf/nodes-config/#executor-node
https://docs.dremio.com/current/get-started/cluster-deployments/deployment-models/yarn-hadoop/#step-3-deploy-dremio-executors-on-yarn
https://docs.dremio.com/current/get-started/cluster-deployments/deployment-models/amazon-deployments/amazon-eks/eks-admin/#changing-your-configuration
https://github.com/dremio/dremio-cloud-tools/blob/master/charts/dremio_v2/docs/administration/Scaling-Coordinators-and-Executors.md


Operating Dremio Runbook

Dremio at increasing concurrency rates. The tests are often repeated with increased engine
sizes.

Since the tests run against Dremio, the results, just like any other queries, are available in the
queries.json file and this can be reviewed and aggregated by individual queries per test to
deduce at which concurrency Dremio starts to be put under wait time and sleep time pressure.
From this information, you can infer what percentage-wise concurrency improvements you can
expect by scaling up the number of executors in the cluster or specific engines.

Ideally, this load test should run against the production cluster from which the queries were
obtained. Still, in the worst case it can be run against a Test/QA/UAT server if it is configured to
be identical to the production server (or very close to it); the load test is meaningless if it’s
performed on a cluster that in no way resembles the production cluster.

Though this is not an exact indicator of what size your cluster needs to be, it allows you to
retrieve real metrics that you can use as predictors to plan your scale-up of Dremio nodes
appropriately for what you anticipate future concurrency levels to be. Without performing any
such sizing exercise, it is tough to say how many extra nodes you might need if your
concurrency doubles or triples, for example.

Monitor Dremio Cluster Health

Dremio exposes system metrics via its JMX interface, which allows for near-real-time
monitoring of what is happening regarding heap and direct memory consumption, garbage
collection frequencies, lightweight thread usage, active, completed and failed jobs, jobs
waiting in queues and more.

Dremio recommends connecting third-party monitoring tools to Dremio to capture and monitor
these metrics. These third-party tools can often also be configured to access Dremio’s REST
API endpoints to issue periodic queries to Dremio to obtain further system information for
display on monitoring dashboards.

Upon certain critical or warning thresholds being met for these various JMX and SQL metrics,
the tools can be configured to send alerts to operations personnel who can investigate if
issues are building in the Dremio cluster. Without such monitoring and alerting, the first time
you hear of an issue with the Dremio cluster will be when you receive a call from an end user
complaining their queries are not executing, or their BI dashboard is not refreshing. Monitoring
the system allows you to identify and fix potential issues before they happen.

This document provides information on some of the more useful metrics to capture and
sensible alerting thresholds you can set.

dremio.com 10

https://www.dremio.com/wp-content/uploads/2023/12/Monitoring-Dremio.pdf


Operating Dremio Runbook

Use Case / Semantic Layer Operations Tasks
This section details all use case-related activities that a Dremio operative needs to perform
regularly. The table below summarizes Dremio’s recommended cadence for completing each
activity. Please refer to the relevant subsections for further details on each activity.

Activity Frequency Method

Re-balance Workload
Management

Monthly or automated daily Analyze queries.json data manually or
use scripts (to automate) to deduce
queue thresholds.

Evaluate reflection usage Monthly Analyze queries.json data

Review and adjust metadata
refresh frequencies

Quarterly Dremio UI

Evaluate current
worst-performing queries

Monthly Analyze queries.json data

Evaluate query errors Weekly Analyze queries.json data

Self-serve cluster usage
information

Weekly Analyze queries.json data

Get content out of Dremio
spaces

During deployment cycles Dremio REST API calls

Put content into Dremio spaces During deployment cycles Dremio REST API calls

Re-balance Workload Management (rules, queues, engines)

The Workload Management �WLM� feature of Dremio Software provides the capability to
manage cluster resources and workloads.

Dremio has guidelines for setting up some sensible initial guardrails for queue and job memory
limits and initializing the query cost thresholds for when queries will get routed to either the
Low or High Cost Queries queues when the cluster is first created.

For Dremio Software installations where no engines or just a single engine is configured and
therefore all queries get routed to the same set of executors, it is essential to set up queue and

dremio.com 11

https://docs.dremio.com/current/reference/api/catalog/
https://docs.dremio.com/current/reference/api/catalog/container-space#creating-a-space


Operating Dremio Runbook

query memory limits and set sensible concurrency limits to prevent rogue queries from bringing
down Executors unnecessarily. It is a lot better to have Dremio identify and cancel a single
query because it recognizes it exceeds the set memory limits than it is to let that query run and
cause out-of-memory issues on an Executor, which will then cause all queries being handled
by that executor to fail.

Since the workloads and volumes of queries change over time, every month the WLM settings
for query cost thresholds should be re-evaluated and adjusted to re-balance the proportion of
queries that flow to each of the query cost-based queues.

The document containing these guidelines can be found here.

Evaluate Reflection Usage

On a monthly basis Dremio recommends evaluating the reflection usage strategies being
employed on the cluster. With great power comes great responsibility, and you need to ensure
that your users are not abusing their power to create reflections to the detriment of the overall
operational efficiency of the cluster. You only need to add reflections when the circumstances
are right. You must also diligently evaluate and remove reflections that do not provide the value
they should.

Evaluating Adding Reflections

When developing use cases in Dremio’s semantic layer, it’s often best to build out the use case
iteratively without any reflections to begin with. Then, as you complete iterations, you can run
the queries and analyze the data in the query history to deduce which ones take the longest to
execute and whether there are any common factors between a set of slow queries contributing
to the slowness.

For example, perhaps there are a set of five slow queries which are each derived from a VDS
that contains a join between two relatively large tables; in this situation you might find that
putting a raw reflection on the VDS that is performing the join helps to speed up all five queries
because an Apache Iceberg representation of the join results will be created and can be
automatically used to accelerate views derived from the join. This allows you to get the query
planning and performance benefits of Apache Iceberg, and you can even partition the
reflection to accelerate queries that the underlying data wasn’t initially optimized for. This is a
critical pattern since it means you can leverage a small number of reflections to speed up
potentially many workloads.

Raw reflections can be helpful in cases where you have large volumes of JSON or CSV data.
Whenever this type of data is queried, the entire data set must be processed, which can be

dremio.com 12

https://www.dremio.com/wp-content/uploads/2023/12/Rebalance-Workload-Management-Rules.pdf


Operating Dremio Runbook

inefficient. Adding a raw reflection over the JSON or CSV data again allows for an Apache
Iceberg representation of that data to be created and opens up all of those planning and
performance benefits that come with it.

Similar to the JSON/CSV situation described above, another use of raw reflections is simply to
offload heavy queries from an operational data store. Often DBAs do not want their precious
operational data stores (e.g. OLTP databases) being overloaded with analytical queries while
they are busy processing billions of transactions, so in this situation you can leverage Dremio
raw reflections again to create that Apache Iceberg representation of the operational table and
when a query comes in that needs the data it will read the reflection data as opposed to going
back to the source.

Another significant use case often requiring raw reflections is joining on-premises data to
cloud data. In this situation you will typically find that retrieving the on-premises data becomes
the bottleneck for queries due to the latency in retrieving the data from the source system,
therefore leveraging a raw reflection on the VDS where the data is joined together can almost
always yield significant performance gains.

If you have connected Dremio to client tools and those client tools are issuing different sets of
group by queries against a VDS, if those group by statements are taking too long to process
compared to the desired SLAs then you might want to consider adding an aggregate reflection
to the VDS to satisfy the combinations of dimensions and measures that are being submitted
from the client tool.

For further best practices when considering how and where to apply reflections, visit this
page.

For detailed instructions on how to create and update reflections, visit this page.

Failure to use Dremio reflections means you could miss out on significant performance
enhancements for some of your poorest-performing queries. However, creating too many
reflections can also have a negative impact on the system as a whole. The misconception is
often that more reflections must be better, but when you consider the overhead in maintaining
and refreshing them at intervals, the reflection refreshes can end up stealing valuable
resources from your everyday workloads.

Where possible, organize your queries by pattern. The idea here is that you try to create as few
reflections as possible to service as many of our queries as possible, so finding those points in
our semantic tree where a lot of queries go through can help us accelerate a larger number of
queries; the more reflections you have that may be able to accelerate the same query patterns

dremio.com 13

https://docs.dremio.com/current/sonar/reflections/best-practices/
https://docs.dremio.com/current/sonar/reflections/best-practices/
https://docs.dremio.com/current/sonar/reflections/creating-and-editing-reflections/


Operating Dremio Runbook

the longer the planner will need to take evaluating which reflection will be best suited for
accelerating the query being planned.

Evaluate the Removal of Unused Reflections
Analysis of the information Dremio captures about queries that have been executed, available
in queries.json, joined with data in system tables like sys.reflections and sys.materializations
can provide details of the frequency each reflection present in Dremio is being leveraged. For
any that are not being leveraged, you can perform further analysis to determine if any of them
are still being refreshed and if they are, how many times they have been refreshed in the
reporting period and how many hours of cluster execution time they have been consuming.

Checking for and removing unused reflections monthly is good practice because it can reduce
clutter in the reflection configuration and often frees up many hours of cluster execution cycles
that can be used for more critical workloads.

Review and Adjust Metadata Refresh Frequencies

Dremio recommends reviewing the refresh frequencies for all your data sources every quarter
at a minimum or whenever you add a new data source. This is to ensure they are set
appropriately based on what you know about the frequency with which metadata changes in
the data source.

The default metadata refresh set against data sources is every 1 hour. For the vast majority of
data sources this is far too frequent. If the data in the sources only gets updated for example
once every 6 hours, then it doesn’t make sense to refresh the data sets every 1 hour; instead,
you could change the refresh schedule to every 6 hours in the data source settings. See
Scheduling Metadata Refreshes in the Dremio docs.

Further to the above recommendation, since metadata refreshes can be scheduled at the data
source level, overridden at each individual PDS level, and performed programmatically, it
makes sense to review each new data source to understand where best to place the most
appropriate setting. For example, for data lake sources it could be acceptable to set a long
metadata refresh schedule (e.g. 3000 weeks) at the data source level so that the scheduled
refresh is very unlikely to fire, and then perform an ALTER TABLE .. REFRESH METADATA
command as part of the ETL process because there you know when the data generation has
completed. For relational sources it's usually OK to set a high value (like days) for the refresh
schedule at the source level, but then for PDSs where you know they will be changing more
frequently, you can override the source setting directly on the PDS.

dremio.com 14

https://docs.dremio.com/current/admin/metadata-caching/#scheduling-metadata-refreshes


Operating Dremio Runbook

Often datasets get updated as part of overnight ETL runs. In this situation it doesn’t make
sense to refresh the metadata of the dataset until you know the ETL process is finished. To
handle this, organizations create a script that triggers the manual refresh of each dataset in
the ETL process once they see the dataset ETL has been completed. The script can either call
the Dremio SQL REST API or make JDBC/ODBC queries to exercise the ALTER TABLE..REFRESH
METADATA command. An extension to this approach is that sometimes the ETL processes do
not fully update an existing dataset; instead they might change specific partitions or create
new partitions. In this situation, to speed up the metadata refresh process you can use the
script to tell Dremio only to refresh the changed or new partitions (note this will work with
Parquet and iceberg data sets but not CSV or JSON�.

If you have a data source with many datasets in it but the vast majority never change their
structure or never have new files added, then it makes little sense to refresh those sources on
a fixed schedule. Instead, set the metadata to never refresh at the source and set up scripts to
trigger a manual refresh against a specific dataset using the ALTER TABLE..REFRESH
METADATA syntax.

Suppose you set the metadata refresh schedule to never refresh and have no scripting
mechanism to refresh your metadata. In that case, the fallback situation for Dremio when a
query comes in, if the planner notices that the metadata is stale or invalid, is to perform an
inline metadata refresh during the query planning phase. This can of course have a negative
impact on the duration of the query execution since it will also incorporate that metadata
refresh duration.

Dremio also recommends that you add a dedicated metadata refresh engine if you haven’t
added one already. This ensures the executors will service all metadata refresh activities in
isolation from other workloads. This avoids any problems with metadata refresh workloads
taking CPU cycles and memory away from business-critical workloads and ensures they have
the best chance of finishing in a timely manner.

Evaluate Current Worst Performing Queries

Every month, Dremio recommends you analyze the jobs submitted to Dremio by writing the
contents of daily queries.json files to the data lake and then exposing them as a single PDS.
One of the simplest analyses you can perform is the performance of our queries, which can
take in several factors.

The first and probably easiest factor to consider is the overall execution time of a query; you
want to identify the top 5�10 longest-running queries every month to understand why they are
taking so long; is it the time taken to read data from the source, are you lacking CPU cycles, is

dremio.com 15

https://docs.dremio.com/current/admin/metadata-caching/#triggering-metadata-refreshes-manually
https://docs.dremio.com/current/admin/metadata-caching/#refreshing-partition-metadata
https://docs.dremio.com/current/admin/metadata-caching/#triggering-metadata-refreshes-manually


Operating Dremio Runbook

the query spilling to disk, was the query queued at the start? Did it take a long time to plan? A
lot of these scenarios and how to look out for them in a query profile are covered in Dremio’s
Training Module 7, called Query Tuning, so be sure to review the details of that module.

The query data also allows us to focus on planning times. High planning time queries should
also be investigated to determine the cause for the planning time; this could be due to the
complexity of the query, it could be because it needed to do an inline metadata refresh due to
stale metadata (check metadata refresh schedules, see the section called Review and Adjust
Metadata Refresh Frequencies above), it could be because there are a lot of reflections being
considered which could be an indicator that there are too many reflections defined in the
environment (see the section called Remove unused Reflections for further details on
identifying if there are redundant reflections in your cluster).

Evaluate Query Errors

Every week, Dremio recommends analyzing the latest week of query history to identify all
query failures. A query failure is any query that did not reach the COMPLETED state in the
query history data. You can categorize your failures into groups and focus your efforts on
queries that are most serious or frustrating for end users. Usually, the vast majority of errors
you encounter will be syntax errors introduced as users write queries; these can generally be
ignored.

Understanding the nature of your query failures can lead to opportunities to retrain or upskill
users and highlight issues in Dremio or connectivity issues to data sources or client tools.

Ignoring your errors means issues may go undetected for longer, which might lead to an
unwanted build-up of frustration from your user community.

Self-Serve Cluster Usage Information

The query history provides valuable information to operations personnel who track Dremio
usage over time. Dremio recommends tracking usage information at various levels of
granularity weekly so that you can spot the early signs of changes in activity trends on the
Dremio cluster. The data captured in the query history allows you to visualize and report on
aggregated query volumes by users, by queues, by time of day or day of week/month etc,
enabling you to anticipate the need for changes to engine sizes in the cluster.

By not keeping track of cluster usage information, you risk operating an under-sized cluster,
which can strain system resources and lead to higher query times if queries incur wait times

dremio.com 16



Operating Dremio Runbook

during planning or execution. It also adds to the risk of increased Out Of Memory errors for
individual queries on the cluster as the load increases.

Migrate/Get Content out of Dremio Spaces

During deployment cycles, there are several activities that customers will perform repeatedly,
for example moving a small number of resources from one Dremio environment to another.
Dremio exposes REST APIs for performing programmatic catalog operations, such as retrieving
metadata for specific objects. By combining sequences of REST API calls, you can retrieve sets
of metadata from Dremio in a much more granular way than can be achieved using the
standard dremio-admin backup functionality.

This approach is helpful when you have multiple teams working in different spaces within a
Dremio environment and you want to migrate, for example, only one space from a development
environment into a test environment or from a test environment into production.

Community-created scripts exist to automate the retrieval of metadata from Dremio. These
scripts leverage combinations of Dremio REST API calls described above to extract the
metadata for sets of objects defined in a configuration file. The scripts are packaged inside a
tool called Dremio Cloner, which is available here.

Given the situation described above, you can use the Dremio Cloner tooling to export all
resources associated with the chosen space from Dremio onto a local disk. From there you
could develop some script to check the objects into a version control repository such as Git if
desired.

Dremio Cloner is a useful example of how to perform these actions, however you are free to
build your own pipelines to interact with the Dremio REST API to achieve the same outcome.

Migrate/Put Content into Dremio

During deployment cycles, there are several activities that customers will perform repeatedly,
for example moving a small number of resources from one Dremio environment to another.
Dremio exposes REST APIs for performing programmatic catalog operations, such as importing
metadata from a local disk into Dremio. By combining sequences of REST API calls, you can
import metadata into Dremio in a much more granular way than can be achieved using the
standard dremio-admin restore functionality.

dremio.com 17

https://github.com/deane-dremio/dremio-cloner


Operating Dremio Runbook

This approach is useful when you have multiple teams working in different spaces within a
Dremio environment and you want to migrate, for example, only one space from a development
environment into a test environment or from a test environment into production.

Community-created scripts exist to automate metadata import from a local disk into Dremio.
These scripts leverage combinations of Dremio REST API calls to import metadata for sets of
objects defined in a configuration file previously exported from a Dremio environment. The
scripts are packaged inside a tool called Dremio Cloner, which is available here.

Given the situation described above and assuming you have already exported the resources
for your chosen space onto a local disk, then you can use the Dremio Cloner tooling to import
those resources into the target Dremio environment without affecting any of the resources
outside of the space you imported.

Dremio Cloner is a useful example of how to perform these actions, however you are free to
build your own pipelines to interact with the Dremio REST API to achieve the same outcome.

dremio.com 18

https://github.com/deane-dremio/dremio-cloner

