
Dremio Software

Migrate a Dremio
Standalone Cluster to
Kubernetes

Introduction
The document describes how to migrate a Dremio standalone deployment to Kubernetes. A
standalone deployment means that Dremio is deployed on virtual machines (VMs).

⚠ NOTICE
For simplification, the document does not cover any continuous integration/continuous
delivery �CI/CD� implementation. It assumes you are installing from a local or remote terminal.

The document covers a high-level migration to Kubernetes. It does not cover any monitoring
migration and is not intended to be a deep dive into cloud vendors' different Kubernetes
distributions.

dremio.com

Migrate a Dremio Standalone Cluster to Kubernetes

Why Deploy Dremio on Kubernetes?

There are several advantages of deploying Dremio on Kubernetes.

No failover coordinator is required for high availability �HA�
Kubernetes deployments do not require a failover coordinator for high availability �HA�. If a pod
or node fails, a new pod is deployed, and the persistent disk is automatically attached to the
new pod. This reduces the complexity and cost of the entire deployment.

The hardware saved by not requiring a secondary node for HA can be used to host an
additional executor or a scale-out coordinator.

If a fail-over coordinator fails, the entire system is down, so Kubernetes deployments tend to
be robust. Dremio deployed on Kubernetes should survive multiple node failures as long as
new and healthy nodes are added to the cluster’s node pools.

No network file system �NFS� required

Kubernetes deployments do not require a network file system �NFS�. Kubernetes uses
Persistent Volume Claims �PVCs) to manage disks. If a pod or node fails, a new pod is
deployed, and the persistent disk is automatically attached to the new pod. NFS would require
support for locking. The Azure NFS or NetApp NFS offering is more costly than regular
premium disks.

In addition, NFS throughput correlates with the requested size, so users typically need a larger
and more expensive NFS disk. NFS could also be a source of error if mounted incorrectly or if
other pods access it and put load on the disks or modify existing files.

No interaction is required in case of high-availability failover

In Kubernetes deployments, a failover for high availability typically requires no interaction with
the cluster. If a node fails, cloud vendors should provide a new node to the cluster’s node pool,
and the pod should be automatically re-deployed on the new node. The system is self-healing.
When a coordinator fails while using VMs, the coordinator must be repaired manually.

Complete coverage of support

When using Azure Kubernetes or AWS Kubernetes together with Dremio’s Kubernetes
deployment, all involved components should be covered by Support. Since AKS and EKS are
managed services, customers should get complete Microsoft Azure or AWS support. In
addition, the fully built Docker image for Dremio includes Dremio and the operating system
base image, which Dremio fully supports.

dremio.com 2

Migrate a Dremio Standalone Cluster to Kubernetes

When using VMs, customers need to maintain the operating systems as well. This means
keeping them up-to-date, applying security fixes, and managing the entire configuration.
Depending on the Linux distribution, a customer may not get support for the operating system
(e.g. CentOS, Ubuntu) and may need to license support separately from Red Hat or Canonical.
Customers may not require separate support when using AKS or EKS and Dremio’s pre-built
Docker image.

Lower total cost of ownership

Kubernetes deployments require fewer hardware resources, such as additional hardware for
the fail-over coordinator, and do not require NFS.

Additionally, Kubernetes deployments require less operational interaction, which saves costs.
For example, there is no operating system to manage and keep up-to-date. You can perform
Azure Kubernetes updates with a single click or command, and everything automatically
upgrades in a rolling fashion.

The same applies to a Dremio upgrade: it is just a single command you can integrate into CI/CD
tools. In a standalone deployment without automation, you must connect to any single node
and perform the upgrade manually. Upgrades for Dremio in Kubernetes ensure that all
executors see the same configuration, so there is also less room for mistakes during
deployment and upgrades.

Furthermore, Kubernetes deployments reduce the outage time required for upgrades and do
not require you to license any operating system, such as Red Hat, to get support.

Faster upgrades

On Kubernetes, Dremio upgrades can be performed in just a few minutes. You only need to
modify the imageTag value in the Helm Charts values.yml file and then execute the helm
upgrade command. After a few minutes, the new images are pulled and deployed, and
dremio-admin is automatically upgraded as well.

In comparison, a VM upgrade requires more effort. Users need to connect to each node, stop
the service, distribute the package, upgrade the RPM package, run the upgrade command, and
start the service again. This process could be automated using Ansible, but Kubernetes has an
existing automated solution.

Additionally, Azure provides an easy way to upgrade the Kubernetes version of Dremio in the
UI or with a single command. The Kubernetes upgrade happens in a rolling fashion. An
additional node is deployed in the node pool with the new version. Then an old node gets
marked as unschedulable, pods move to the new node, and the old node is unprovisioned. This
repeats until all old nodes have been replaced.

dremio.com 3

Migrate a Dremio Standalone Cluster to Kubernetes

Dremio Kubernetes Architecture

The architecture below shows an example of an Azure Kubernetes Service deployment.

The following table contains a high-level mapping of the standalone deployment components
to Kubernetes terminology:

dremio.com 4

Migrate a Dremio Standalone Cluster to Kubernetes

Standalone Deployment Kubernetes

External Load-Balancer for the Web-UI,
ODBC and Arrow-Flight �Ports 9047, 31010,
32010�

The load balancer in Kubernetes is
represented as a service component. A
service can be a load balancer or just a
cluster IP address. Kubernetes takes
responsibility for provisioning the load
balancer. Sometimes, no load balancer
integration is available, especially in
on-premise Kubernetes deployments. In this
case, an external load balancer can be
provided and bound to the local Kubernetes
node ports.

The Dremio coordinator and executors run on
standalone VMs and are started and
managed with a systemctl service.

The Dremio coordinator and executors run in
pods. This is similar to a Docker container
instance. Pods can move to another node if a
node fails. Pods are orchestrated and
managed by Kubernetes. A pod itself is
managed by a stateful set. This facilitates
scaling the executor nodes and ensures all
executor pods see the same configuration.

VMs usually have local disks, block devices,
or NFS attached. These disks store Dremio’s
metadata or store caches for the executors.
Dremio recommends SSD or NVMe local
disks since they store C3 and Spill data.

Kubernetes has an abstraction layer for disks
called Persistent Volume Claim �PVC�. A PVC
is created based on a storage class. These
storage classes define the underlying
implementation type, such as NFS or block
storage. Avoid local storage, which can have
negative impacts in case of failures and does
not allow you to reassign pods to other
nodes.

Dremio’s distributed storage resides on the
data lake. This includes metadata,
reflections, and uploads. No data is stored on
the local disk.

There is no difference for Kubernetes; the
distributed storage works the same: Dremio’s
distributed storage is hosted on the data
lake. This includes metadata, reflections, and
uploads. No data is stored on the local disk.

Prerequisites

Prerequisites and requirements Check

Existing Kubernetes cluster must be available

dremio.com 5

Migrate a Dremio Standalone Cluster to Kubernetes

Prerequisites and requirements Check

Create the cluster with three node pools:

● System node pool: Hosts the Kubernetes system pods and the Zookeeper
instances. These nodes require only 4 CPUs and 8 GB RAM.

● Coordinator pool: Hosts the Dremio coordinator (usually one). Nodes can have
the same size as in the standalone VM deployment �16 cores, 32 GB RAM�.

● Executor pool: Hosts the Dremio executor pods. This pool can be
auto-scalable in clouds like AWS, Azure or GCP. Nodes can have the same
size as in the standalone VM deployment �16 cores, 128 GB RAM�.

● Ensure the Kubernetes cluster has the same firewall openings as the current
standalone VM cluster.

Possible options and vendors for Kubernetes:

● AWS� Amazon Elastic Kubernetes Service �EKS��
https://aws.amazon.com/eks/

● Azure: Azure Kubernetes Service �AKS��
https://azure.microsoft.com/en-us/products/kubernetes-service
Note: Use AzureCNI, not Kubenet! This cannot be changed later.
The subnet should have at least 1024 IPs (subnet /22 or larger).

● Google Cloud Platform �GCP�� Google Kubernetes Engine �GKE��
https://cloud.google.com/kubernetes-engine

● On-premises: Any Kubernetes distribution should work, but we recommend
using a distribution that provides full commercial support.

The network bandwidth must be 10 GBits per second or higher.

Load balancer integration in Kubernetes or standalone load balancer

If you use large cloud services like AWS, Azure, or GCP, the load balancer integration
should already be in place, and no further action is required. The load balancer in
Kubernetes is represented as a service component. Kubernetes takes responsibility
for provisioning the load balancer.

At times, no load balancer integration is available, especially in on-premise
Kubernetes deployments. In such cases, an external load balancer can be deployed
and bound to the local Kubernetes node ports.

Dremio recommends utilizing integrated load balancer provisioning in Kubernetes.

dremio.com 6

https://aws.amazon.com/eks/
https://azure.microsoft.com/en-us/products/kubernetes-service
https://cloud.google.com/kubernetes-engine

Migrate a Dremio Standalone Cluster to Kubernetes

Prerequisites and requirements Check

Storage classes must be available

Storage in Kubernetes is provisioned with storage classes and PVCs. These storage
classes should already be available in the cluster.
We recommend using block storage or an NFS integration that supports file system
locking. Common Internet File System �CIFS� is not supported.
The recommended minimum throughput for production environments is 100 MB/s.
For an on-premises deployment, the team responsible for Kubernetes administration
must provide these storage classes.

The three large cloud providers already have storage classes available. The
performance correlates with the size of the disk.

● AWS EKS� We recommend EBS CSI. To add the storage class, follow this
document:
https://docs.aws.amazon.com/eks/latest/userguide/managing-ebs-csi.html
The coordinator disk size should start from 500 GB and use IO2 storage with
5000 IOPS �10 IOPS per GB in the storage class). IO2 storage is recommended
because of its higher durability and performance. The executors should use
gp3 storage with a minimum size of 300 GB and use the free 3000 IOPS and
125 MB/s throughput. For Zookeeper, a 16 GB disk should be sufficient with
gp2 or gp3 storage.
The storage classes for io2 and gp3 need to be created since they are not
available out-of-the-box.

● Azure AKS� The storage class is already available. For Zookeeper, use
“managed” and 16 GB. The coordinator needs a 512 GB managed-premium
disk. The executors should use a minimum of 256 GB of managed-premium
storage.
https://learn.microsoft.com/en-us/azure/aks/concepts-storage#storage-class
es

● Google GKE� The storage class is already available. For Zookeeper, use
“premium-rwo” and 16 GB. The coordinator needs a minimum of 512 GB and
“premium-rwo” �PD SSD� and the executors go with a minimum of 256 GB of
“premium-rwo” storage.
https://cloud.google.com/kubernetes-engine/docs/how-to/persistent-volumes
/ssd-pd

Access to Docker Hub for EE image

Register a Docker Hub account. Open a support case via https://support.dremio.com
and request access to the Dremio EE repository. Provide the Docker Hub account
name in your support case. You should receive access to
https://hub.docker.com/repository/docker/dremio/dremio-ee/general.

dremio.com 7

https://docs.aws.amazon.com/eks/latest/userguide/managing-ebs-csi.html
https://learn.microsoft.com/en-us/azure/aks/concepts-storage#storage-classes
https://learn.microsoft.com/en-us/azure/aks/concepts-storage#storage-classes
https://cloud.google.com/kubernetes-engine/docs/how-to/persistent-volumes/ssd-pd
https://cloud.google.com/kubernetes-engine/docs/how-to/persistent-volumes/ssd-pd
https://support.dremio.com
https://hub.docker.com/repository/docker/dremio/dremio-ee/general

Migrate a Dremio Standalone Cluster to Kubernetes

Prerequisites and requirements Check

Container Registry

Dremio does not provide service level agreements �SLAs) on the Docker Hub
repository. We strongly recommend setting up a container registry to decouple the
deployment dependencies and get better performance with a local registry.

The three large cloud providers already have container registries available:

● Amazon Elastic Container Registry: https://aws.amazon.com/ecr/
● Azure Container Registry:

https://azure.microsoft.com/en-us/products/container-registry
● Google Artifact Registry: https://cloud.google.com/artifact-registry

There are also on-premises solutions, such as JFrog Container Registry.

⚠ NOTICE
When importing the images, import the exact same version deployed in your
standalone deployment. Migration from a standalone deployment to Kubernetes
and upgrading should be two separate steps.

Kubectl and Helm tools

Kubectl is the primary tool to run administrative commands against a Kubernetes
cluster. To install Kubectl, read https://kubernetes.io/docs/tasks/tools/.

Helm is a tool for managing and orchestrating more complex installations. The Dremio
installation on Kubernetes is managed via Helm Charts. To install Helm, read
https://helm.sh/docs/intro/install/.

dremio.com 8

https://aws.amazon.com/ecr/
https://azure.microsoft.com/en-us/products/container-registry
https://cloud.google.com/artifact-registry
https://kubernetes.io/docs/tasks/tools/

Migrate a Dremio Standalone Cluster to Kubernetes

Prerequisites and requirements Check

Credentials to access the cluster

Credentials should be provided in the kube config format:
https://kubernetes.io/docs/concepts/configuration/organize-cluster-access-kubeconf
ig/.

Cloud providers usually provide their own tools to authenticate against a Kubernetes
cluster:

● AWS EKS�
https://docs.aws.amazon.com/eks/latest/userguide/create-kubeconfig.html

● Azure AKS�
https://learn.microsoft.com/en-us/cli/azure/aks?view=azure-cli-latest#az-aks
-get-credentials

● Google GKE�
https://cloud.google.com/kubernetes-engine/docs/how-to/cluster-access-for-
kubectl

Kubernetes Namespace to deploy Dremio

Dremio is usually installed within a namespace called ‘dremio’. If the cluster is
exclusive to Dremio, you can use the ‘default’ namespace instead.

Migration Steps
Import the Docker EE Image into Your Container Registry

Before you start with the migration, import the Dremio EE docker image into your company’s
container registry.

⚠ NOTICE
Dremio does not provide any SLAs on the Docker Hub repository. We strongly recommend
setting up a container registry to decouple the deployment dependencies and get better
performance with a local registry.

The way the import works might differ among vendors, but there is also a generic approach
using Docker. The registry already needs to be connected with Docker:

Login into Docker Hub

$ docker login

Pull the Dremio EE image

$ docker pull dremio/dremio-ee:24.3.0

dremio.com 9

https://kubernetes.io/docs/concepts/configuration/organize-cluster-access-kubeconfig/
https://kubernetes.io/docs/concepts/configuration/organize-cluster-access-kubeconfig/
https://docs.aws.amazon.com/eks/latest/userguide/create-kubeconfig.html
https://learn.microsoft.com/en-us/cli/azure/aks?view=azure-cli-latest#az-aks-get-credentials
https://learn.microsoft.com/en-us/cli/azure/aks?view=azure-cli-latest#az-aks-get-credentials
https://cloud.google.com/kubernetes-engine/docs/how-to/cluster-access-for-kubectl
https://cloud.google.com/kubernetes-engine/docs/how-to/cluster-access-for-kubectl

Migrate a Dremio Standalone Cluster to Kubernetes

Re-tag the so that it can be pushed to the new registry

$ docker tag dremio/dremio-ee:24.3.0 yourregistry.azurecr.io/dremio-ee:24.3.0

Push the re-tagged image to the registry

$ docker push yourregistry.azurecr.io/dremio-ee:24.3.0

Collect Configurations from the Standalone Deployment

The following configurations need to be collected from the existing standalone deployment:

● The TLS certificate and private key in a PEM format. For more information about the PEM
format, read https://en.wikipedia.org/wiki/Privacy-Enhanced_Mail.

● The distributed storage credentials and configuration from the
“/opt/dremio/conf/core-site.xml” file and any core-site.xml custom settings.

● Authentication configuration for LDAP, AD, AAD, or OAuth2 (usually a separate file that
you can copy as-is and reuse in the Kubernetes deployment).

● Sizing and memory configuration.
● Additional configuration for the Java Virtual Machine, such as garbage collection

settings, logging changes, and additional flags for Dremio.

Perform a Backup of Dremio MetaStore

Take a backup from the VM standalone deployment. The backup is stored in the data lake with
the credentials of the distributed storage. Depending on the size of the metastore, the backup
can take a while.

Backup with AWS S3

⚠NOTICE
This step does not apply to Dremio AWSE Edition. Please continue at “Backup for AWSE
Edition”

Run the following command, replacing <s3_bucket> with the name of your S3 bucket.

$ /opt/dremio/bin/dremio-admin backup -l -d dremioS3:///<s3_bucket>/dremio-backup

Backup with Azure ADLS

The backup is stored in the storage account configured in core-site.xml. The backup container
name is "dremio-backup".

dremio.com 10

https://en.wikipedia.org/wiki/Privacy-Enhanced_Mail

Migrate a Dremio Standalone Cluster to Kubernetes

/opt/dremio/bin/dremio-admin backup -l -d dremioAzureStorage://:///dremio-backup

Backup with Google GCS

Run the following command, replacing <gcs_bucket> with the name of your S3 bucket.

$ /opt/dremio/bin/dremio-admin backup -l -d dremiogcs:///<gcs_bucket>/dremio-backup

⚠ NOTICE
After the backup completes, keep Dremio stopped so that no other changes can be applied
to the cluster (e.g. VDS changes).

Backup for AWSE Edition
The backup and restore process for Dremio AWSE differs from Dremio EE.

Using the Dremio REST APIs to implement a migration process is recommended. You can find
the Dremio REST API reference here: https://docs.dremio.com/24.0.x/reference/api/

An example implementation for the REST API usage is Dremio Cloner. Dremio Cloner is a
community-maintained project that allows the export and import of Dremio’s catalog via the
REST APIs: https://github.com/deane-dremio/dremio-cloner

⚠ NOTICE
As of Dremio version 24.3, there is only a limited REST API available to manage Dremio’s User
Defined Functions �UDFs) and scripts.

When using Dremio Cloner, the following objects are not exported and need to be copied
manually:

● Home spaces �Views/VDS, Uploads, etc)
● Scripts
● User-defined functions �UDFs)

Clone and Configure the Helm Charts

The Dremio Helm Charts are available at https://github.com/dremio/dremio-cloud-tools.

dremio.com 11

https://docs.dremio.com/24.0.x/reference/api/
https://github.com/deane-dremio/dremio-cloner
https://github.com/dremio/dremio-cloud-tools

Migrate a Dremio Standalone Cluster to Kubernetes

Clone the Repository
Clone the repository to your local machine:

$ git clone https://github.com/dremio/dremio-cloud-tools.git

Go to the Helm Charts (v2). Create a copy of the values.yml file and name it after your
environment (for example, “dev” or “prod”). The original values.yml file should not be modified
so that it can be used as a template.

Go into the main folder of the Helm Charts

$ cd dremio-cloud-tools/charts/dremio_v2

Create a copy of values.yml and name it after your environment

$ cp values.yml values-myenvname.yml

Open the configuration file with your favorite editor

$ vi values-myenvname.yml

Change the Container Image to Your Container Registry
The default configuration in the values.yml file points to the Docker Hub images and uses a
‘latest’ image tag. The image tag should always point to a specific version, like ‘24.2.0’.

Point the container image to your company's container registry

image: yourregistry.azurecr.io/dremio-ee

Never use 'latest'

imageTag: 24.2.0

Optional: If the container registry is not connected to the cluster, you can also create an image
pull secret:

$ kubectl create secret docker-registry mycontainerregistry \

--docker-server=DOCKER_REGISTRY_SERVER \

--docker-username=DOCKER_USER \

--docker-password=DOCKER_PASSWORD \

--docker-email=DOCKER_EMAIL

Add the image pull secret to values-myenv:

imagePullSecrets:

- mycontainerregistry

dremio.com 12

Migrate a Dremio Standalone Cluster to Kubernetes

CPU, Memory, Disks, and Node Pool Configuration
It is possible to deploy Dremio only on one node pool. Nevertheless, we recommend splitting
up the deployment and allocating it to different node pools for the following reasons:

● To ensure better and faster failover behavior, Zookeeper should not run on Dremio
coordinator or executor nodes.

● The Kubernetes-system pods should run on dedicated nodes.
● In case of overutilization of executor pods, they would not be affected (same applies to

Zookeeper).
● All node resources can be allocated to the executors since there is fine-grained control

over where the pods live.
● You can choose a different size for coordinator and executor nodes if needed.
● You can replace node pools with larger or smaller instances
● The executor pool can be auto-scalable and does not need to be touched in Azure when

scaling up with Helm Charts.

The following table describes an example layout for the node pools:

Node Pool
Name

Node Count Mode Node Size Description

agentpool 3 System 2x CPU
8 GB RAM

Hosts kube-system pods,
monitoring and Zookeeper

coordpool 1 User 16x CPU
32 GB RAM

Hosts the coordinator pod. When
scaling out, the number can be
increased.

executorpool 1 to n
static or
auto-scalable

User 32x CPU
128 GB RAM

Hosts the executor pods. The
scaling happens automatically,
based on the number of
executors in the Helm Charts.

Not all CPU and memory resources of a node can be allocated to Dremio because there will be
overhead for the operating system and Kubernetes management pods. To find out how many
resources can be allocated to Dremio, use the following command:

$ kubectl describe node aks-executorpool-11591932-vmss00002n

...

Allocatable:

cpu: 15740m

dremio.com 13

Migrate a Dremio Standalone Cluster to Kubernetes

ephemeral-storage: 119703055367

hugepages-1Gi: 0

hugepages-2Mi: 0

memory: 59341828Ki

pods: 30

...

Remember to subtract the Kubernetes system pods from the allocatable resources.

;TIP
Rule of Thumb for CPU and Memory Resource Allocation

For CPUs, reserve 2 CPUs for Kubernetes system pods and operating system. For example, if
the node has 16 CPUs, allocate 14 CPUs to Dremio. If the node has 32 CPUs, allocate 30
CPUs.

For memory, multiply the total available memory by 0.875. For example, if the machine has
128 GB of physical memory, allocate 112 GB of memory to Dremio.

The storage classes and disk sizes depend on your Kubernetes cluster implementation. Read
the prerequisites for storage class availability for more information.

The example below shows a configuration for Azure. For the hardware setup in the table
above, you might use the following Dremio Helm Chart configuration in the values-myenv.yml
file:

This example contains only the parts necessary to clarify how to allocate resources

and define the node selectors

coordinator:

cpu: 14

memory: 28672

Count is 0 if only one coordinator is required

count: 0

volumeSize: 512Gi

Based on your Kubernetes version; this example is for Azure

storageClass: managed-premium

nodeSelector:

agentpool: coordpool

...

executor:

cpu: 30

memory: 114688

dremio.com 14

Migrate a Dremio Standalone Cluster to Kubernetes

engines: ["default"]

Replace with the desired number of nodes

count: 5

volumeSize: 256Gi

Based on your Kubernetes version; this example is for Azure

storageClass: managed-premium

nodeSelector:

agentpool: executorpool

...

Zookeeper

zookeeper:

The Zookeeper image used in the cluster.

image: zookeeper

imageTag: 3.8-temurin

cpu: 1

memory: 1024

count: 3

volumeSize: 8Gi

Based on your Kubernetes version; this example is for Azure

storageClass: managed

nodeSelector:

agentpool: agentpool

Additional Java Options (recommended)
It is possible that your standalone deployment includes customizations like additional
monitoring and garbage collection optimizations.

⚠ NOTICE
We recommend adding a custom logging path to the configuration so that logs always
persist. Additionally, we recommend an improved garbage collection configuration, such as
the example below.

The following example describes what to add to the values-myenv.yml file:

Java options for the coordinator: changed logging path + improved GC

coordinator:

extraStartParams: >-

-Ddremio.log.path=/opt/dremio/data/log

-XX:+UseG1GC -XX:G1HeapRegionSize=32M -XX:MaxGCPauseMillis=500

-XX:InitiatingHeapOccupancyPercent=25

-Xloggc:/opt/dremio/data/log/gc-%t.log -XX:+PrintGCTimeStamps

Java options for the executors: changed logging path + improved GC

dremio.com 15

Migrate a Dremio Standalone Cluster to Kubernetes

executor:

extraStartParams: >-

-Ddremio.log.path=/opt/dremio/data/log

-XX:+UseG1GC -XX:G1HeapRegionSize=32M -XX:MaxGCPauseMillis=500

-XX:InitiatingHeapOccupancyPercent=25

-Xloggc:/opt/dremio/data/log/gc-%t.log -XX:+PrintGCTimeStamps

Add additional parameters into the configuration by adding new lines.

Distributed Storage Configuration
The distributed storage configuration is mandatory. Dremio does not support any local
distributed storage.

There are several supported storage types in the Helm Charts:

● AWS S3 (or S3 compatible)
● Azure Storage Gen 2
● Google Cloud Storage

The following storage types are not recommended:

● Local (only Dremio < 21.0.0�
● Azure Storage Gen 1 (will be discontinued in 2024 by Azure)
● HDFS and MapR�FS (not yet supported by Helm Charts)

The configuration for the distributed storage should be available in the core-site.xml file of the
Dremio standalone deployment that is being migrated.
The configuration happens in the values-myenv.yml file.

AWS S3 - Distributed Storage Configuration
Choose the desired authentication option and replace values like bucket name and path with
the correct values for your configuration.

distStorage:

type: "aws"

aws:

bucketName: "AWS Bucket Name"

path: "/"

authentication: "metadata"

If using accessKeySecret for authentication against S3, uncomment the lines below

and use the values

dremio.com 16

Migrate a Dremio Standalone Cluster to Kubernetes

to configure the appropriate credentials.

#

#credentials:

accessKey: "AWS Access Key"

secret: "AWS Secret"

#

If using awsProfile for authentication against S3, uncomment the lines below and

use the values

to choose the appropriate profile.

#

#credentials:

awsProfileName: "default"

#

Extra Properties

Use the extra properties block to provide additional parameters to configure the

distributed

storage in the generated core-site.xml file.

#

#extraProperties: |

<property>

<name></name>

<value></value>

</property>

Azure ADLS - Distributed Storage Configuration
Replace the values for storage account name, container name, and storage account access
key with the correct values for your configuration.

distStorage:

type: "azureStorage"

azureStorage:

accountName: "<Storage Account Name>"

filesystem: "<Container Name>"

path: "/"

credentials:

accessKey: "<Storage Account Access Key>"

Google GCS - Distributed Storage Configuration
Choose the desired authentication option and replace values like bucket name and path with
the correct values for your configuration.

distStorage:

dremio.com 17

Migrate a Dremio Standalone Cluster to Kubernetes

type: "gcp"

gcp:

bucketName: "<GCS Bucket Name>"

path: "/"

authentication: "auto"

If using serviceAccountKeys, uncomment the section below, referencing the values

from

the service account credentials JSON file that you generated:

#

#credentials:

projectId: GCP Project ID that the Google Cloud Storage bucket belongs to.

clientId: Client ID for the service account that has access to Google Cloud

Storage bucket.

clientEmail: Email for the service account that has access to Google Cloud

Storage bucket.

privateKeyId: Private key ID for the service account that has access to Google

Cloud Storage bucket.

privateKey: |-

-----BEGIN PRIVATE KEY-----\n Replace me with full private key value.

\n-----END PRIVATE KEY-----\n

TLS Configuration
The certificate and private key must be provided in PEM format to use them in Kubernetes.

If the certificate is in PKCS12 format, you can use the following command to extract the private
key and certificate in PEM format:

Optional if keys are in PKCS12

$ openssl pkcs12 -in mydomain.p12 -out mydomain.crt.pem -clcerts -nokeys

$ openssl pkcs12 -in mydomain.p12 -out mydomain.key.pem -nocerts -nodes

If the keys are in JKS format, convert the store into PKCS12 and then extract the PEM from
PKCS12�

Optional if keys are in JKS

$ keytool -importkeystore -srckeystore mydomain.jks -destkeystore mydomain.p12

-srcstoretype jks -deststoretype pkcs12

$ openssl pkcs12 -in mydomain.p12 -out mydomain.crt.pem -clcerts -nokeys

$ openssl pkcs12 -in mydomain.p12 -out mydomain.key.pem -nocerts -nodes

dremio.com 18

Migrate a Dremio Standalone Cluster to Kubernetes

⚠ IMPORTANT NOTICE
The certificate file ‘mydomain.crt.pem’ should contain the entire certificate chain. The most
specific certificate comes first, then the intermediate certificate, and then the root
certificate.
If 'mydomain.crt.pem' does not contain the entire certificate chain, this might lead to issues
with certain browsers, especially during PowerBI integration.

Once you have the certificate and private key in PEM format, run the following command to
create a secret in Kubernetes:

$ kubectl create secret tls dremio-tls-secret --key mydomain.key.pem --cert

mydomain.crt.pem

Next, enable TLS, reference the ‘dremio-tls-secret’ in the values-myenv.yml file, and change
the web port to 443�

coordinator:

web:

port: 443

tls:

enabled: true

secret: dremio-tls-secret

ODBC/JDBC Client

client:

port: 31010

tls:

enabled: true

secret: dremio-tls-secret

Flight Client

flight:

port: 32010

tls:

enabled: true

secret: dremio-tls-secret

Ensure that service type ‘LoadBalancer’ is set:

service:

type: LoadBalancer

dremio.com 19

Migrate a Dremio Standalone Cluster to Kubernetes

Authentication - LDAP/AAD/OAuth2 Integration
An existing authentication integration should be available in the standalone deployment. You
can skip this step if no authentication integration is configured and you work with Dremio local
users.

Copy the authentication configuration file (e.g. azuread.json or ldap.json) to:

dremio-cloud-tools/charts/dremio_v2/config

Open the values-myenv.yaml file and add one of the following lines to extraStartParams
(choose only one):

coordinator:

...

Example for OAuth2

extraStartParams: >-

-Dservices.coordinator.web.auth.type=oauth

-Dservices.coordinator.web.auth.config=oauth.json

...

Example for Azure AD/AAD

extraStartParams: >-

-Dservices.coordinator.web.auth.type=azuread

-Dservices.coordinator.web.auth.config=azuread.json

...

Example for LDAP

extraStartParams: >-

-Dservices.coordinator.web.auth.type=ldap

-Dservices.coordinator.web.auth.config=ldap.json

Run the Helm Deployment

After the configuration is complete, you can run the Helm deployment.
Verify that you work on the correct cluster:

$ kubectl config current-context

my-prod-kubernetes-cluster

Verify that the connection to the Kubernetes cluster works:

dremio.com 20

Migrate a Dremio Standalone Cluster to Kubernetes

$ kubectl get nodes

NAME STATUS ROLES AGE VERSION

aks-agentpool-25792647-vmss00003z Ready agent 9m46s v1.25.6

aks-coordpool-33677896-vmss00001o Ready agent 9m38s v1.25.6

aks-executorpool-21759880-vmss00003w Ready agent 9m43s v1.25.6

aks-executorpool-21759880-vmss00003x Ready agent 9m36s v1.25.6

…

Run the Helm command to start the installation:

$ helm upgrade dremio --install -n dremio dremio-cloud-tools/charts/dremio_v2 -f

dremio-cloud-tools/charts/dremio_v2/values-myenv.yaml --wait

Release "dremio" has been installed. Happy Helming!

NAME: dremio

LAST DEPLOYED: Fri Jun 16 11:11:25 2023

NAMESPACE: default

STATUS: deployed

REVISION: 1

TEST SUITE: None

Verify that all pods are up and running:

$ kubectl get pods

NAME READY STATUS RESTARTS AGE

dremio-executor-0 1/1 Running 0 75m

dremio-executor-1 1/1 Running 0 75m

dremio-master-0 1/1 Running 0 75m

Add DNS Entry for the Load Balancer

This step only applies if you provisioned the load balancer with the Helm Charts. If you created
the load balancer externally, skip this step.

$ kubectl get svc -n dremio

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S)

AGE

dremio-client LoadBalancer 10.0.106.137 4.156.48.192

31010:30762/TCP,443:32246/TCP,32010:30691/TCP 77d

dremio-cluster-pod ClusterIP None <none> 9999/TCP

dremio.com 21

Migrate a Dremio Standalone Cluster to Kubernetes

77d

kubernetes ClusterIP 10.0.0.1 <none> 443/TCP

594d

zk-cs ClusterIP 10.0.81.202 <none> 2181/TCP

77d

zk-hs ClusterIP None <none>

2181/TCP,2888/TCP,3888/TCP 77d

You can find the IP address at ‘dremio-client’ > EXTERNAL�IP (in this example, 4.156.48.192�.
Add the IP address to the DNS records with your Dremio domain (e.g. dremio.mydomain.com).

After you add the IP address to the DNS records with your Dremio domain, you can access
Dremio at
https://dremio.mydomain.com.

If you did not change the port from 9047 to 443, the URL would be
https://dremio.mydomain.com:9047.

You should see the Dremio Software License and Services Agreement screen because no data
has been restored yet:

dremio.com 22

https://dremio.mydomain.com
https://dremio.mydomain.com:9047

Migrate a Dremio Standalone Cluster to Kubernetes

Restore the Backup of the Standalone Deployment

With Dremio running, you can restore the data from the backup.

Change the cluster to admin mode. If the coordinator node is running, there is a lock on the
RocksDB and a restore will not work. The following command will stop the coordinator and
launch an admin pod:

$ helm upgrade dremio -n dremio dremio-cloud-tools/charts/dremio_v2 -f

dremio-cloud-tools/charts/dremio_v2/values-myenv.yaml --set DremioAdmin=true --wait

Verify that the dremio-admin pod is available:

dremio.com 23

Migrate a Dremio Standalone Cluster to Kubernetes

$ kubectl get pods

NAME READY STATUS RESTARTS AGE

dremio-admin 1/1 Running 0 98s

Connect to the dremio-admin pod:

$

Confirm that the following directory is empty (if it is not empty, the restore will fail):

/opt/dremio/data/db

If the directory is not empty, run the following command:

$ rm -Rf /opt/dremio/data/db/*

When the backup was taken at the beginning of the migration, it was written into the data lake
of the distributed storage. The backup should have a timestamp and name like
‘dremio_backup_2023�09�12_14.00’. Look up this name in S3, ADLS, or GCS.

Restore from S3 Data Lake

⚠ NOTICE
This step does not apply to Dremio AWSE Edition. Please see “Backup for AWSE Edition”

Run the following command (replace ‘dremio_backup_2023�09�12_14.00’):

$ /opt/dremio/bin/dremio-admin restore -d

dremioS3:///my_s3_bucket//dremio-backup/dremio_backup_2023-09-12_14.00

Restore from Azure Data Lake
Run the following command (replace ‘dremio_backup_2023�09�12_14.00’):

$ /opt/dremio/bin/dremio-admin restore -d

dremioAzureStorage://:///dremio-backup/dremio_backup_2023-09-12_14.00

Restore from Google Cloud Storage
Run the following command (replace ‘dremio_backup_2023�09�12_14.00’):

dremio.com 24

Migrate a Dremio Standalone Cluster to Kubernetes

$ /opt/dremio/bin/dremio-admin restore -d

dremiogcs:///<my_gcs_bucket>/<my_folder>/dremio_backup_2023-09-12_14.00

After the restore finishes, a “completed” message is displayed. The process can be terminated
even if the command does not return the message to the bash prompt.

Stop the Dremio admin node and start it again:

$ helm upgrade dremio -n dremio dremio-cloud-tools/charts/dremio_v2 -f

dremio-cloud-tools/charts/dremio_v2/values-myenv.yaml --set DremioAdmin=false --wait

Verify that all pods started up and run again:

$ kubectl get pods

NAME READY STATUS RESTARTS AGE

dremio-executor-0 1/1 Running 0 75m

dremio-executor-1 1/1 Running 0 75m

dremio-master-0 1/1 Running 0 75m

Verify the Deployment

Go to https://dremio.mydomain.com. You should see a login screen instead of the Dremio
Software License and Services Agreement screen.

If LDAP or no additional authentication is configured. In that case, you should be prompted for
username and password:

dremio.com 25

https://dremio.mydomain.com

Migrate a Dremio Standalone Cluster to Kubernetes

If you configured Azure Active Directory, the login screen should look like this:

If OAuth2 is configured, the login screen should look like this:

dremio.com 26

Migrate a Dremio Standalone Cluster to Kubernetes

After you log in, you should be able to see all sources, spaces, and view definitions from the
former standalone deployment:

dremio.com 27

Migrate a Dremio Standalone Cluster to Kubernetes

Stop and Decommission Standalone Nodes

Let your team verify that everything has migrated properly. We also recommend that you keep
the old standalone version of Dremio for a few days to restore anything missed during the
migration. The instances need not be turned on and can be completely stopped.

Next Steps

After the migration is complete, consider the following steps:

dremio.com 28

Migrate a Dremio Standalone Cluster to Kubernetes

● Use a static IP address for the load balancer so that the IP stays stable, even when the
Helm Release is uninstalled.

● Use Nginx ingress to serve Dremio UI HTTP requests. This allows a seamless integration
with certificate management, which can automatically renew certificates.

● Create an automated backup cron job.
● Add Prometheus or application-level monitoring.
● Integrate the deployment process into CI/CD (e.g. Azure DevOps, Jenkins, or GitHub

Actions)

dremio.com 29

