
Dremio Software

Migrate a BI Workload
to the Dremio
Semantic Layer
This document aims to provide a methodology for taking complex queries, often
auto-generated by BI tools, and re-engineering them into semantic layer views that conform to
Dremio’s Semantic Layer Best Practices.

The document introduces a fictitious data model implemented inside a BI tool. It then
showcases some queries generated by the BI tool and submitted to the connected data source
to populate data onto the dashboard widgets.

Given the sets of queries that are generated by the BI tool, the document walks through a
methodology for breaking those complex queries down into views in Dremio’s Semantic Layer
that can act as reusable building blocks to simplify how you expose the data required for each
widget, giving the same results, whilst also providing the option to leverage Dremios’
acceleration techniques to yield improved performance when the BI tool retrieves the data
directly from Dremio.

This ultimately means the complexity of the queries, which has manifested due to creating the
data model inside the BI tool, can be extracted into easy-to-use views in Dremio. The data
needed for each widget can be served by dedicated views that can be further accelerated if
required.

dremio.com

Migrate a BI Workload to the Dremio Semantic Layer

BI Tool Data Model
This data model relates to flight information that an end user modeled in their BI Dashboard.
The model contains the following datasets:
● flights - includes details of all flights made by passenger airlines over several years.
● unique_carriers - mapping of an airline's 3-letter IATA code to the full airline name.
● Airport_master_coordinates - details of the global coordinate locations of airports, their

IATA code and the full airport name.

Dashboard Queries
The dashboard issues the following three queries to Dremio.

Query 1 - Longest flights per airline
SELECT

a.DESCRIPTION as "airline_name",

CONCAT(f.origin, '-', f.dest) as "route",

origins.display_airport_name as origin_airport_name,

destinations.display_airport_name as dest_airport_name,

AVG(f."distance") as "distance"

FROM "flights" f

INNER JOIN unique_carriers a ON f.op_carrier = a.code

INNER JOIN "airport_master_coordinates" origins on f.origin = origins.AIRPORT

INNER JOIN "airport_master_coordinates" destinations on f.dest = destinations.AIRPORT

WHERE TO_DATE(f.fl_date, 'YYYY-MM-DD') BETWEEN '2023-01-01' AND '2023-12-31'

AND f.cancelled = 0

GROUP BY "airline_name", "route", origin_airport_name, dest_airport_name

ORDER BY "distance" DESC

dremio.com 2

Migrate a BI Workload to the Dremio Semantic Layer

Query 2 - Total flights by airline and origin
SELECT

a.DESCRIPTION as airline_name,

f.origin,

COUNT(f.origin) as "total_flights"

FROM "flights" f

INNER JOIN unique_carriers a ON f.op_carrier = a.code

INNER JOIN C"airport_master_coordinates" origins on f.origin = origins.AIRPORT

INNER JOIN "airport_master_coordinates" destinations on f.dest = destinations.AIRPORT

WHERE TO_DATE(f.fl_date, 'YYYY-MM-DD') BETWEEN '2023-01-01' AND '2023-12-31'

AND f.cancelled = 0

GROUP BY "airline_name", "origin"

ORDER BY "total_flights" DESC

Query 3 - Average departure delays on a specific route by airline
SELECT

a.DESCRIPTION as airline_name,

origins.display_airport_name as origin_airport_name,

destinations.display_airport_name as dest_airport_name,

AVG(f.dep_delay) as avg_departure_delay,

COUNT(f.origin) as "num_flights"

FROM "flights" f

INNER JOIN unique_carriers a ON f.op_carrier = a.code

INNER JOIN "airport_master_coordinates" origins on f.origin = origins.AIRPORT

INNER JOIN "airport_master_coordinates" destinations on f.dest = destinations.AIRPORT

WHERE TO_DATE(f.fl_date, 'YYYY-MM-DD') BETWEEN '2023-01-01' AND '2023-12-31'

AND f.cancelled = 0

AND origins.AIRPORT = ?

AND destinations.AIRPORT = ?

GROUP BY "airline_name", origin_airport_name, dest_airport_name

ORDER BY "avg_departure_delay" DESC

Methodology
The following high-level methodology steps assume you have already connected to the same
data source in Dremio that the BI tool is also connecting to and that you have set up
Preparation, Business and Application layer folders within a space in our Semantic Layer. Each
step is broken down further in the subsections.

1. Create a view in the Preparation layer for each raw data table in the data model, apply
relevant casts and filters, and create any required derived columns in the Preparation
layer views.

2. Create a view in the business layer for each view in the Preparation layer
3. Create canonical/business model views from the base views in the Business layer
4. Create a view in the application layer for each view in the Business layer

dremio.com 3

Migrate a BI Workload to the Dremio Semantic Layer

5. Create Application layer views that query the canonical model views from the
Application layer and refine them by adding any further required joins/aggregations
needed to expose the data in the format that can be consumed by the individual widgets
in the BI tool.

6. Update the widgets in the BI tool to get their data from the relevant views exposed in
the Application layer.

7. Perform end-to-end testing of the solution, initially without applying reflections.

Create Preparation Layer views
The assumption has already been made that you have connected to the same data source in
Dremio that the BI tool is connected to. However, confirm that every table referenced in your
complex query is also exposed as a table in the data source in Dremio.

If one doesn’t already exist, create a folder beneath the Preparation folder named the same as
the data source. Inside the folder that is named the same as the data source, for each table in
the data source create a view with the same name as the table in the folder.

Example:

For each of the three views in our fictitious data model created in the source folder of the
Preparation layer, you should do several further manipulations in the Preparation layer to
conform to our Semantic Layer Best Practices, highlighted in the subsections below.

dremio.com 4

Migrate a BI Workload to the Dremio Semantic Layer

Cast data types
Where applicable, for example when you have promoted a CSV file as a table in a data source
or if the data types exposed by the source for specific columns are not representative of the
data in the column, ensure the data type associated with each column is accurate by adding
the necessary CASTs in the Preparation layer view to achieve this.

There are several examples of this in the flights table of our data model. The physical flights
table has columns entirely defined as strings, as shown below, but the data model has several
columns defined as other types, including date, float and integer. Therefore, we can apply the
following cast statements in our flights view in the Preparation layer:
CAST(fl_date AS DATE) AS fl_date,

CAST(dep_delay AS FLOAT) AS dep_delay,

CAST(distance AS INTEGER) AS distance,

CAST(cancelled AS INTEGER) AS cancelled

Create derived columns
Identify any non-aggregate derived columns in the queries comprising calculations/functions
over fields in the same table and create that derived column into the view.

An example of this can be taken from query 1, where the following derived column can be
added to the flights view in the Preparation layer:

CONCAT(origin, '-', dest) as "route"

dremio.com 5

Migrate a BI Workload to the Dremio Semantic Layer

Apply guaranteed filters for data that will NEVER be needed
⚠ IMPORTANT NOTE
If you cannot guarantee that the filtered data will never be needed in any downstream views,
do not add the filter in the Preparation Layer.

If there are any common filters that you can GUARANTEE will always be applied to ALL views
derived from your Preparation layer view, then add that filter into the view at the Preparation
layer.

An example of this exists in the data model presented in this document whereby all of the
example queries contain a common filter on the flights view, so if you can guarantee that
ALL queries that ever hit the flights view will leverage that filter then it can be placed in a
view in the Preparation layer. The view in our scenario will contain this permanent filter:

WHERE TO_DATE(fl_date, 'YYYY-MM-DD') BETWEEN '2023-01-01' AND '2023-12-31'

AND cancelled = 0

dremio.com 6

Migrate a BI Workload to the Dremio Semantic Layer

Apply transformations to scalar expressions, not columns
Using the filter in the previous section as an example, this filter is inefficient. When comparing
a column value (be it a partition key, primary key or any column value) to a literal as above, if a
transformation is required before a comparison, then be sure to apply the transformation to the
static/literal side and not to the column value(s). Applying the transformation to the column
side means the function has to be applied to every record to check for equality, whereas
applying it to the static value means the transformation only needs to happen once and the
result can be compared against the raw column value. With that rule in mind, the filter from the
previous section can be re-written as follows to make it more efficient:
WHERE fl_date BETWEEN TO_DATE('2023-01-01', 'YYYY-MM-DD') AND

TO_DATE('2023-12-31', 'YYYY-MM-DD')

dremio.com 7

Migrate a BI Workload to the Dremio Semantic Layer

The general rule is: If transformation is needed, transform the scalar side of the expression,
not the column side (i.e. WHERE partition_key = fn(‘some_value’), not WHERE

fn(partition_key) = ‘some_value’)

This ensures that the transform will perform optimally whether Dremio performs the transform
or whether it is pushed to the underlying data source.

Additional Preparation Layer Manipulations
As well as the manipulations described above, which directly relate to the scenario presented
in this document, several other possible manipulations would also fit into the Preparation layer
if these were relevant to your situation, for example leveraging a reflection to repartition a
dataset.

Leverage reflection to repartition dataset
If an underlying dataset is partitioned in a particular way, e.g. on a date column, but a
significant portion of the query workload will be filtering or joining by a different column, then it
can make sense in the Preparation layer to introduce a raw reflection partitioned on the
different column, thus enabling partition pruning on otherwise expensive workloads to
accelerate them.

Create base Business Layer views
It is always good practice to create a one-to-one view in the Business layer for every view that
you create in the Preparation layer; this is so that if required, each table can essentially be
exposed as-is up through each layer without being joined to any other view in Dremio to cater
for situations where client tools would like to consume the raw data assets.

dremio.com 8

Migrate a BI Workload to the Dremio Semantic Layer

Create canonical/business model views in the Business Layer
Using the initial Business layer views created in the previous step as a base, create the
required canonical/business model views in the Business layer. In the scenario in this
document, this means a single canonical model object called flight_details, which joins the
three base views in the Business layer into a single view:

Space.Business."flights" f

INNER JOIN Space.Business.unique_carriers a ON f.op_carrier = a.code

INNER JOIN Space.Business."airport_master_coordinates" origins on f.origin =

origins.AIRPORT

INNER JOIN Space.Business."airport_master_coordinates" destinations on f.dest =

destinations.AIRPORT

In more complex scenarios, several layers of views may be created in the Business layer as you
create reusable building blocks that build up to your canonical/business model. These reusable
views can benefit the solution because they can be places to add reflections if you find that
querying the model is slow during query execution.

Remove duplicate columns
One of the side-effects of creating a canonical model like the one described in this scenario is
that in the view created by performing the joins above, you will be left with duplicate columns
in the projection list, for example the columns used in the joins; f.op_carrier is essentially the
same as a.code. Dremio recommends removing duplicate columns.

dremio.com 9

Migrate a BI Workload to the Dremio Semantic Layer

Rename columns if the same column name appears in the canonical model
Sometimes when joining tables together you will end up with clashes in column names
between the tables. Dremio handles this by adding an incrementing number to the end of each
duplicate column name it finds; for example, if two tables, let’s call them a and b, were joined
and each contains a column called code, then Dremio will continue to call the first column code
and it will rename the second column to code0. This makes it difficult to determine which
column is associated with which original table. Dremio recommends renaming the duplicate
columns to reference the table they originated from, e.g. a_code and b_code.

Additional Business Layer Manipulations
The aspects mentioned above apply to the scenario in this document. However, as you create
your canonical model objects other factors might need your consideration; several of these are
documented below.

Join considerations
When creating the joins, consider the following aspects to ensure you maximize the ability to
do fast columnar scans:

dremio.com 10

Migrate a BI Workload to the Dremio Semantic Layer

1. If joining a fact to a dimension table on column(s) where a function must be applied to
one or the other column to get the columns to match, apply the function on the smaller
side of the join

2. If joining to subselects, particularly ones containing aggregations (select max(), select
distinct, etc.), consider creating a view with a reflection on the subselect.

3. Attempt to factor out repeated subselects to a common set of views, which can be
reflected and reused across many joins.

Scalar subqueries
If you have a query that contains a scalar subquery (defined as a subquery that returns a
single value - one column and one row) that is filtering the query, e.g.:

SELECT name, cost

FROM product

WHERE id=(SELECT product_id

FROM sale

WHERE price=5000

AND product_id=product.id

);

This is inefficient because the inner query needs to be executed for each record in the outer
query. Instead, you should create a view with an INNER JOIN to make things more efficient,
e.g.:

SELECT p.name, p.cost

FROM product p

INNER JOIN sale s ON p.id=s.product_id

WHERE s.price=5000;

Subqueries in an IN clause
If you have a query that contains a subquery in an IN clause, e.g.:

SELECT name, cost

FROM product

WHERE id IN (SELECT product_id FROM sale);

This is not very efficient because again the inner query needs to be executed for each record
in the outer query. Instead, you should create a view with an INNER JOIN to make things more
efficient:

SELECT DISTINCT p.name, p.cost

FROM product p

INNER JOIN sale s ON s.product_id=p.id;

Note using DISTINCT in the query above to remove duplicates; this is often necessary if you
transform queries with an IN or a NOT IN clause into an INNER JOIN.

dremio.com 11

Migrate a BI Workload to the Dremio Semantic Layer

Subqueries in a NOT IN clause
If you have a query that contains a subquery in a NOT IT clause, e.g.:

SELECT name, cost

FROM product

WHERE id NOT IN (SELECT product_id FROM sale);

This could be more efficient. Instead, you should create a view with a LEFT OUTER JOIN and a
WHERE clause:

SELECT DISTINCT p.name, p.cost

FROM product p

LEFT OUTER JOIN sale s ON s.product_id=p.id

WHERE s.product_id IS NULL;

Correlated Subqueries in EXISTS and NOT EXISTS clauses
Subqueries in an EXISTS or a NOT EXISTS clause are easy to rewrite with LEFT OUTER JOINs.
Let’s say you have the following query that is used to obtain details of products NOT sold in the
year 2023�

SELECT name, cost, city

FROM product

WHERE NOT EXISTS (SELECT id

FROM sale WHERE year=2023 AND product_id=product.id);

This can be rewritten in a view with a LEFT OUTER JOIN for improved efficiency as follows:
SELECT p.name, p.cost, p.city FROM product p

LEFT OUTER JOIN sale s ON s.product_id=p.id

WHERE s.year!=2023 OR s.year IS NULL;

If the query were an EXISTS clause, the WHERE clause in the JOIN version of the query above
would simply be WHERE s.year=2023 instead.

Correlated Subqueries with aggregates in the projection column
If a query contains a subquery to derive an aggregate value in the list of projected columns,
e.g.:

SELECT

main.project_name,

main.project_budget,

main.project_start_ym,

(SELECT SUM(sub.project_budget)

FROM projects sub

WHERE sub.project_start_ym <= main.project_start_ym) AS total_budget

FROM

projects main

ORDER BY main.project_start_ym ASC

dremio.com 12

Migrate a BI Workload to the Dremio Semantic Layer

Then you can re-write this in a view using a window function as follows:
SELECT

project_name,

project_budget,

project_start_fiscal_ym,

SUM(main.project_budget) OVER (ORDER BY project_start_fiscal_ym) AS total_budget

from projects

Common Table Expressions �CTEs)
If the query contains a Common Table Expression �CTE� (e.g. there is a SELECT query in a
WITH clause), create a view of the CTE and use that view when joining it back into the main
query. Avoid using WITH clauses in the Semantic layer because the queries in the WITH
clauses can end up being executed multiple times.

Create base Application Layer views
Much like we said about the base Business layer views, it is always good practice to create a
one-to-one view in the Application layer for every base view that you create in the Business
layer; this is so that if required, each table can essentially be exposed as-is up through each
layer without being joined to any other view in Dremio to cater for situations where client tools
would like to consume the raw data assets. This is often useful for self-service reporting use
cases.

dremio.com 13

Migrate a BI Workload to the Dremio Semantic Layer

Create bespoke Application Layer views
In the Application layer, you may need to take the Business layer objects and create further
joins/aggregations upon them to expose data in a format ready to be consumed by end user
tools. If there are use case-specific filters that need to be applied then these are best to be
placed in the Application layer.

Update widgets in the BI tool
Before testing the solution, you must update the widgets in your BI tool to gather their data
from the views exposed from the Application layer in Dremio rather than the internal data
model. Taking a copy of your dashboard before making these changes is recommended.

Test the solution
Once the end-to-end solution is created, test how it performs without any reflections by
leveraging the same tools the end user would use or, at worst, by simulating the same query
that those tools would issue to Dremio.

In our testing of the queries in this scenario, we noted these query times:

Original query execution directly
against tables via Dremio

Query execution against the Application
layer view in the Dremio model

Query 1 28s / 13046 rows 8s / 13046 rows

Query 2 23s / 1967 rows 7s / 1967 rows

Query 3 2s / 5 rows 1s / 5 rows

If a query is slow, consider where it is slow and determine if there are views in the query plan
where a reflection could be placed to accelerate multiple workloads, not just the specific
query. In our scenario, since all three queries are accessing the same canonical model object
and all that is different is the way the data is grouped and aggregated, it should be possible to
create an Aggregate Reflection on the Business layer canonical model object that all three
queries can make use of. Let us analyze this further below: we can see that several fields are
being grouped by and several measures.
Superset of fields used in GROUP BY clauses in the three queries: "airline_name", "route",

origin_airport_name, dest_airport_name

Superset of aggregated measures used in the three queries: AVG(f."distance"),
COUNT(f.origin), AVG(f.dep_delay)

dremio.com 14

Migrate a BI Workload to the Dremio Semantic Layer

Therefore, we can create an Aggregate Reflection to help accelerate every query in our
solution as follows:

Running each of the queries in this scenario again, you can see that they all leverage that
single Aggregate Reflection and they all take less than a second to complete:

Query 1 ��1s / 13046 rows)

dremio.com 15

Migrate a BI Workload to the Dremio Semantic Layer

Query 2 ��1s / 1967 rows)

Query 3 ��1s / 5 rows)

dremio.com 16

Migrate a BI Workload to the Dremio Semantic Layer

Additional Application Layer Considerations
As you create your solutions, other aspects might need your consideration; several of these
are documented below.

Aggregate Reflections and count(distinct)
⚠WARNING
Do not create an Aggregate reflection on measures that you might later want to use in a
count(distinct) query (perhaps from a BI tool)

This is because you will get incorrect results. You need to know what the individual values are
at the time you deduce your distinct values, which could change depending on the
filters/ranges you apply to your data. In this situation, you must use a raw reflection.

Reflections and row-level / column-level filtering
To ensure data integrity and to ensure users are only able to see data that they are permitted
to see, the use of row-level security and column-level security must occur ABOVE any use of
reflections; this is to avoid the risk of a specific user’s filtered records being placed into the
reflection and hence giving other users access to data they shouldn’t have.

Conclusion
This document has demonstrated a methodology and things to consider when migrating
workloads generated by BI tools into Dremio’s semantic layer, which leverages both Dremio
Semantic Layer best practices and general SQL rewrite best practices to achieve performance
gains whilst at the same time maintaining organized structure of your resources and promoting
their reuse. Even in our relatively simple scenario, we have demonstrated how reorganizing
seemingly distinct queries into a reusable semantic layer, coupled with strategically placed
aggregate reflections, can vastly improve the performance of our BI queries.

dremio.com 17

https://www.dremio.com/wp-content/uploads/2023/12/Semantic-Layer-Best-Practices.pdf

