
Dremio Software

Initial Workload
Management Settings

When Dremio is first installed, no guardrails are put in place out of the box to restrict how much
memory any one queue or query in a queue can consume out of the total amount of memory
available. This leaves Dremio open to potential out-of-memory issues if a user issues a large
query that requires more memory than is available on the Dremio executors. In addition, the
default queue concurrencies are a little high and could lead to memory exhaustion if many
smaller queries (or up to 10 large ones) also need to collectively consume more memory than is
available on the Dremio Executors.

This document provides recommendations for how to set up workload management queue and
query memory limits and queue concurrency limits immediately after Dremio is installed to
ensure Dremio will remain operational under memory pressure. The document covers the
situations where Dremio is configured with and without engines.

dremio.com



Dremio Initial Wokload Management Settings

ConfigureWorkload Management for New Installations

The following sections provide recommendations for how to set up some initial queue and
query memory limits based on whether Dremio is or isn’t configured to use multiple engines.

No Engines or Single Engine Configuration
For Dremio installations where no engines or just a single engine is configured and therefore all
queries get routed to the same set of executors, it is essential to set up queue and query
memory limits and set sensible concurrency limits to prevent rogue queries from bringing down
Executors unnecessarily. It is a lot better to have Dremio identify and cancel a single query
because it recognizes it exceeds the set memory limits than it is to let that query run and
cause out-of-memory issues on an Executor, which will then cause all queries being handled
by that executor to fail.

The default queue settings for an out-of-the-box Dremio install are shown below; notice how
no limits are set:

One important value to note is the Average node memory, which in this example is 16384 (or
16GB�. This value tells us the maximum direct memory available on any executor. The value in
this example is low. Consider that Dremio recommends 64GB or 128GB node sizes for
Executors, which, after giving memory to the OS Kernel and heap memory, would leave 52GB
or 112�116GB of direct memory per executor.

Regarding Queue Memory Limit per Node settings, the most important thing we can do when
the initial installation is complete is to ensure every queue has a limit set. Even if you set the
value on every queue to 90�95% of the Average node memory, this will significantly reduce the
potential for the nodes to “lose communication” with Zookeeper and will prevent the executors
from crashing if they encounter memory-intensive queries because a small memory will always
be there to keep the communication with zookeeper.

As a rule of thumb, the total queue memory limit per node summed across the Low and High
Cost User Queries queues should not exceed 120% of the Average node memory value. We

dremio.com 2



Dremio Initial Wokload Management Settings

allow this to exceed 100% because it is reasonably unlikely that both queues will experience
maximum memory usage simultaneously; therefore, we allow some degree of overlap.

The Low and High Cost Reflections queue memory limit should be set to at most the same
values as the queue memory limit for the Low and High Cost User Queries queues. Reflections
typically run far less frequently than other query types and are often triggered to run outside of
regular working hours; therefore, we allow the sum of these values to exceed the Average node
memory value.

However, suppose after making changes to conform to the rule of thumb above you have too
many queries failing due to insufficient memory being available to a particular queue. In that
case, it is safe to increase the amount of memory allocated to the queue where queries are
failing; however, never go beyond 95% of the Average node memory on any one queue.

In terms of job memory limits, for high-cost user queries we want to allow Dremio to execute
the biggest queries, therefore we will let the biggest job consume up to approximately 50�70%
of the total memory available, depending on the Average node memory setting. Low-cost user
queries typically consume far less memory and at most we would set a job memory limit of
50% of the queue memory limit or 5GB for one of these jobs, whichever is lower.

For UI Previews, Dremio recommends setting both the queue and job memory limit to the
maximum memory allocated to a job in the High Cost User Queries queue. It is highly unlikely
that these memory limits will ever get reached, but this provides guardrails in case they do.

Regarding concurrency limits, Dremio recommends the following initial concurrency settings,
regardless of what the memory settings are:

Queue Name Max Concurrency Limit

High Cost Reflections 1

High Cost User Queries 5

Low Cost Reflections 25

Low Cost User Queries 25

UI Previews 50

dremio.com 3



Dremio Initial Wokload Management Settings

The following table summarizes the rules discussed above:

Table 1� Rules for Zero Engines or Single Engine
Queue Name Max Concurrency

Limit
Queue Memory Limit per Node Job Memory Limit per Node

High Cost Reflections 2 0.75 x Average Node Memory 0.5 x Average Node Memory

High Cost User Queries 3 0.75 x Average Node Memory 0.5 x Average Node Memory

Low Cost Reflections 5 0.4375 x Average Node Memory 0.1875 x Average Node Memory*

Low Cost User Queries 20 0.4375 x Average Node Memory 0.1875 x Average Node Memory*

UI Previews 100 0.5 x Average Node Memory 0.5 x Average Node Memory

* 0.1875 x Average Node Memory or 5GB, whichever is lower

The following sections provide examples of sensible memory settings based on various
Average node memory values.

Average Node Memory = 16384 �16GB�

Queue Name Max Concurrency
Limit

Queue Memory Limit
per Node

Job Memory Limit
per Node

High Cost Reflections 2 12GB 8GB

High Cost User Queries 3 12GB 8GB

Low Cost Reflections 5 7GB 3GB

Low Cost User Queries 20 7GB 3GB

UI Previews 100 8GB 8GB

dremio.com 4



Dremio Initial Wokload Management Settings

Average Node Memory = 32768 �32GB�

Queue Name Max Concurrency
Limit

Queue Memory Limit
per Node

Job Memory Limit
per Node

High Cost Reflections 2 24GB 16GB

High Cost User Queries 3 24GB 16GB

Low Cost Reflections 5 14GB 5GB

Low Cost User Queries 20 14GB 5GB

UI Previews 100 16GB 16GB

Average Node Memory = 53248 �52GB�

Queue Name Max Concurrency
Limit

Queue Memory Limit
per Node

Job Memory Limit
per Node

High Cost Reflections 2 40GB 25GB

High Cost User Queries 3 40GB 25GB

Low Cost Reflections 5 20GB 5GB

Low Cost User Queries 20 20GB 5GB

UI Previews 100 25GB 25GB

Average Node Memory = 114688 �112GB�

Queue Name Max Concurrency
Limit

Queue Memory Limit
per Node

Job Memory Limit
per Node

High Cost Reflections 2 84GB 56GB

High Cost User Queries 3 84GB 56GB

Low Cost Reflections 5 50GB 5GB

Low Cost User Queries 20 50GB 5GB

UI Previews 100 56GB 56GB

dremio.com 5



Dremio Initial Wokload Management Settings

Multi-Engine Configuration �AWSE or Kubernetes)

For Dremio installations on AWSE or Kubernetes where multiple engines are configured, we
must understand 1� how many nodes are in the engine and 2� whether a dedicated engine will
service reflections or whether all nodes across all engines will service the reflection refreshes.
The example below assumes a dedicated engine does NOT service reflections.

We also assume a 1-to-1 mapping between a query queue and an engine.

The reason for the �5GB in these calculations is to ensure that when reflections run there is
always a portion of each node in the engine that won’t get utilized by the queries that run on
that engine, which ensures there will always be some free memory available on each node to
service reflections.

Table 2� Rules for Multiple Engines

Queue Name Max Concurrency
Limit

Queue Memory Limit per Node Job Memory Limit per Node

High Cost Reflections 2 Average Node Memory / 2 Average Node Memory / 4

High Cost User Queries 3 �Average Node Memory - 5GB�
/ 2

�Average Node Memory - 5GB�
/ 4

Low Cost Reflections 5 Average Node Memory / 3 0.1875 x Average Node
Memory*

Low Cost User Queries 20 �Average Node Memory - 5GB�
/ 3

0.1875 x Average Node
Memory*

UI Previews 100 �Average Node Memory - 5GB�
/ 2

�Average Node Memory - 5GB�
/ 2

* 0.1875 x Average Node Memory or 5GB, whichever is lower

Note: Average Node Memory needs to be calculated per engine

For cases where we provision a dedicated engine for reflections, we should follow Table 1
instead.

Configure Queues Programmatically

A newly installed Dremio cluster comes with five queues with default configurations. Dremio
provides APIs to update the memory configuration of queues. An approach to programmatically
configure queues, based on cluster size, is provided below.

● Dremio needs the auth token to make any API call. You can obtain an auth token using
the API /apiv2/login POST method. You can find more details here: Dremio Login.

dremio.com 6

https://docs.dremio.com/current/reference/api/#authentication-token


Dremio Initial Wokload Management Settings

● Next, you should calculate the average direct memory by engine by querying Dremio
system tables sys.nodes and sys.memory. You can submit the query via API or JDBC.

● Using the average direct memory, you can compute the following parameters for each
queue:
○ Max Concurrency Limit
○ Queue Memory Limit per node
○ Job Memory Limit per node (based on your implementation, use Tables 1 & 2

above to compute these values from average direct memory)
● For each queue, Dremio generates a unique Queue ID. Get the current queue

configuration using GET /api/v3/wlm/queue. You can find additional details in Dremio All
Queues.

● For each queue, update Dremio with the modified queue configuration using the API PUT
/api/v3/wlm/queue/{id}. You can find additional details in Update Queue.

dremio.com 7

https://docs.dremio.com/current/reference/api/sql/#submitting-an-sql-query
https://docs.dremio.com/current/reference/api/wlm/queue#retrieving-all-queues
https://docs.dremio.com/current/reference/api/wlm/queue#retrieving-all-queues
https://docs.dremio.com/current/reference/api/wlm/queue#updating-a-queue

