dremio

Creating
Multi-Engine Clusters

Introduction

When Dremio is installed, all executor nodes are assigned to a single default engine. This works well at
the beginning of a project, but workloads change when the semantic layer is promoted to the production
environment, and users query live datasets. This can cause resource contention even in large
environments with 20-30 executor nodes.

This document recommends when, why, and how to create a multi-engine cluster.

dremio.com

Creating Multi-Engine Clusters
Prerequisites

This document assumes Dremio has been installed, running, and configured for unlimited splits. This is
set by default for Dremio 21+.

The “Configure WLM based on Query Analysis” section also assumes you have Dremio Query Analyzer
running and its associated VDSs set up in Dremio. Please contact Dremio Professional Services for
details on how to receive the Query Analyzer tool. Version 24.3+ also provides a system table,
sys.jobs_recent, to get this information without using Query Analyzer.

This document also assumes that the user is familiar with Dremio WLM, queryCost, query types, etc.

Out of Scope

This document does not discuss query memory management or tuning through Dremio’s support
options.

Default Engine

When Dremio is installed, there is only one execution engine which comprises all the executor nodes.
Advanced configuration for multi-engine setup cannot be delivered out of the box because each
organization's use case and needs are very different. The workload which this single engine handles is:

e All the user queries (UI_RUN, JDBC/ODBC/Flight, REST API queries)
All heartbeat query checks (e.g., “SELECT 1” from the reporting/Bl tools)
All catalog inquiries (queries from Bl/reporting tools to get information about the table metadata
or schema)
All the reflection refreshes
e All the metadata refreshes

This document will mainly focus on handling the above minus the catalog inquiries. Catalog inquiries are
generally very light, and no query cost is associated with them.

Working with the Default Engine

In a development environment, the default engine can handle all these jobs because of the following
reasons:

The data volume is generally smaller than the production environment.

The number of datasets involved is lower than in the production environment.

The data sets may not be updated with fresh data or not as frequently as in the production
environment.

dremio.com 2

https://docs.dremio.com/current/reference/sql/system-tables/jobs_recent

Creating Multi-Engine Clusters

e The number of users is limited to the number of developers and not the actual users in the
production environment.

e The load tests focus on volume testing or concurrency for user queries. During these tests, the
same reflection and the same dataset are used without considering that they may be getting
updated

e Intuitively, owners of the infrastructure want all nodes to be in the same engine so all nodes are
used, and there is less chance of a node remaining idle.

User queries can slow down as usage increases in the production environment because of resource
contention. Inconsistent long query response times are the first sign of resource contention. Metadata
and Reflection refresh jobs are system jobs run in the background. They are not monitored as closely as
user queries. Therefore, it is recommended to create multiple engines when setting up the production
environment.

Resource Contention

Resource contention happens when many jobs are running simultaneously, and all are contending to get
a portion of the server's resources (CPU, threads, memory, network bandwidth) to complete their work.

Dremio may be processing several queries and metadata refresh jobs as well as refreshing a reflection
simultaneously. Depending on the size of the dataset, number of source files, and available memory, all
these jobs could be fighting for limited resources.

With Resource contention, several things can be observed when you look at the query profile.

Long Sleep times Long Block Times Long Wait Times
By Max Avg Max Wait Time
Sleep Sleep Blocked Blocked
a258.151s
2ma2s 2mo2s 34m28s 3dm28s
Im7s 43mi5s 0.011s 0.113s 5807 7s
53.416s

dremio.com 3

Creating Multi-Engine Clusters

Analyzing the Workload
To analyze the workload, we will make the following assumption in this section:

e We have a production environment, and many users now access Dremio using a Bl or a reporting
tool.

e Queries have been optimized to a satisfactory level.
The workload on the server consists of user queries, reflection refresh jobs, and metadata
refresh jobs

e We have Dremio Query Analyzer (DQA) installed or access to system tables.

The best tool to analyze the workload is Dremio Query Analyzer (DQA). It is also constructive to review
some of the troubling query profiles. DQA utilizes Dremio to read the query history in the “queries.json”
file(s).

Metadata Refresh Jobs

Start by focusing on the metadata refresh jobs (all jobs that start with REFRESH DATASET). Charting
the data per day, we can see an example scenario below:

start Date TotalQueryCount AvgQueueTimeSec MaxBExecTimeSec AvgkxecTimeSec BOthPercentile

3/11/2023 1583 1] 1133 43 72
3/12/2023 1371 91 740 45 74
3/13/2023 176l 220 3044 a4 103
3/14/2023 1le27 B2 1410 73 98
3/15/2023 1776 20 1322 6a a4
3/16,/2023 lecd 45 2833 g2 26
3/17/2023 1683 3 2502 63 92
3/18/2023 1303 1 2183 43 64
3/19,/2023 107z 3 701 41 13
3/20,/2023 1 2 578 73 103
3/27/2023 1548 & 1410 61 74
3/28/2023 1451 & 766 62 a3

Even when MD refresh jobs are not spending much time in the queue, we can see a massive execution
time range with MaxExecTime above 2000 seconds, and 80% of jobs are completing well over 60
seconds.

Typically, we expect MD refresh jobs to have an average exec time of 10-15 seconds, and 75% of the jobs
should be able to be completed in around 20 seconds max. Investigating job profiles should show that
the job spends most of its time in Sleep Time, which means it competes for resources with other jobs
running on the same engine.

dremio.com 4

Creating Multi-Engine Clusters
We can also run this query

select dsName, avg(executionTime) avgExecTime,

PERCENTILE_DISC(O.75) WITHIN GROUP (ORDER BY executionTime ASC) UpperPercentile
from MDRefreshData where outcome='COMPLETED'

group by 1 order by 2 desc

And the results....

avgExecTime UpperPercentiles

2B2619.87% 149425, 8

152733.375 116430.@
143372, 94736842104 40816.8
141837, 764705882355 84578.9
134848, 5873015873 165179.8
128139.97142857143 57521.8
116184, 14835887719 1068635.8
115481, 22413793103 145813.@
114745, 91587381587 1221808.9
114450, 76271185644 129367.8
118266, 85714285714 139974.8@

This shows a huge variance of MD refresh executionTime (excludes planning, queue, and pool time) for
each of the datasets.

After configuring a separate engine for MD Refresh jobs, the results show that MD refresh jobs have a
much more predictable and consistent execution time.

start Date TotalQueryCount AvgQueueTimeSec MaxExecTimeSec AvgExecTimeSec 80thPercentile

3/20/2023 1 2 578 73 102
3/27/2023 1543 & 1410 61 74
3/28/2023 1431 & 766 62 83
3/29/2023 1203 2 lel 11 32
3/30/2023 1318 1 140 10 32
343172023 1781 1 1e2 11 33

4/1,/2023 1317 1 125 8

4422023 1241 1 155

47372023 1455 1 77 9 7

4/4/2023 1323 1 132 11 33

4/5/2023 2657 4 136 11 34

dremio.com 5

Creating Multi-Engine Clusters
Running the same query to calculate the average and upper 75 percentile will give us the following
results.

dsName awgExecTime UpperPercentile
54559, 25 70495.0
49132.35 67156.8
46501.0625 A42757.0
46459, 17647856824 45352.0
45809.5 52337.0
45513.,15789473684 52459.0
45180, 77777777778 42414.0
43384.92227979274 43513.0
42712.15 64824, 0

42059, 51576947369 35456.8

. - . IR TN Ry ST T T IR

48785, 5682352541 37056.8

Another way is to calculate an index called WLMLoad.

select count (*) dsCount, sum(distance) totalDistance, sqrt (totalDistance/dsCount)
WLMLoad

from

(

select dsName, count (*) cnt,avg(executionTime) avgExec,

PERCENTILE_DISC(O.75) WITHIN GROUP (ORDER BY executionTime ASC) UpperPercentile,
(avgExec UpperPercentile) * (avgExec UpperPercentile) distance

from MDRefreshData

where outcome='COMPLETED'

group by 1

having stddev (executionTime) 0
order by 1

) tl

WLMLoad calculation is as follows:

avgExec = avg execution time of MD Refresh of each dataset
UpperPercentile = 75% executionTime of MD Refresh of each dataset
dsCount = number of distinct datasets

Distance = (avgExec - UpperPercentile) * 2

WLMLoad = sqgrt (sum of all distance) / dsCount

For Metadata refresh jobs, WLMLoad should be less than 15000.

Metadata refresh jobs do not require a massive engine. A single node of the same class as other nodes in
the production environment can generally handle the task. If executor nodes have 16 cores/64GB
memory, the MD refresh node should be the same caliber.

If the datasets are parquet files, then you can refresh them by partitions, which will lighten the load even
further, as Dremio will only focus on the newly created partitions. Furthermore, if you have datasets
based on DeltalLake or Iceberg tables, Then MD refresh jobs do not apply to them, and a separate engine
may not be required at all. DeltalLake tables are refreshed by the coordinator.

dremio.com 6

Reflection Refresh Jobs

Creating Multi-Engine Clusters

If after all metadata jobs have been assigned to their own engine and you are still experiencing long
sleep times, you can do the same exercise for reflection refresh jobs.

Unset

select reflection_id, STDDEV(executionTime) stddev
fromReflectionRefreshDatawhere outcome="'COMPLETED'

group by 1order by 2 desc

Will provide these results:

reflection_id
fha5e92d-5a75-4456-bb5d-Zcd@d@efcds2
fod¥fa5a-a5b5-40E5-94c1-3c fdE7E105EE
&5037505-ad30-4162-a524-1 2c 7cdAE5Ea 65
decceada-5059-4167-9865-dAT 15c 720493
d33d75dE-969c-dccE-bR15-3c TAEE3C 25 0e
03e37e60-bo7b-4f5a-a852-9b 8501 8ccade
B25453c5c-c515-4e3f-a449-7f 1 4f 24568 2
Fcl9a2cl-b2da-4589b-87a8-fc5a7s7af £ f
Fhe35c2d-f21b-d6a7-8dfe-2f 12dfe7bozh
Sfd7d5da-a7a3-4e21-bbd2-1f7355a7hE5d
52ae9bE5-6b52-4724-ab@9-c 9544587 2d0b 1

2bSbFe@Z2-4Rcl-42565-9625-52 95 9e5hadak

stddew

FT2320. 05344033502

5536590 . 4055049515

592364, 45731 25094

1875501. @945542972

444509, FFR1552551

545569, 6342042597

21108.117354365532

26575, 037307557523

93933, 2390513455

545102, @2297a7725

45303, 915320451555

SR7R1E. 62991 6304595

As you can see, the stddev is very high for individual reflections. There is solid evidence for separating
an engine for Reflection refreshes jobs.

If stddev is larger than 200000(200 sec) in the top 10 or 15 records, then there is solid evidence that we
need to separate an engine for Reflection refresh.

dremio.com 7

Creating Multi-Engine Clusters
User Query Engines

Query cost is not directly related to the execution time of the query. It is possible for a query to have a
query cost of ~ 4E+15, and it can get executed on an engine <5 sec without reflections. Alternatively, a
qguery can have a cost of 4E+10 and run on a dedicated cluster for 4-5 minutes.

It's important to remember that query cost is an “estimate” calculated as the sum of the number of rows
(records) processed by each operator in each phase. Dremio’s planner cannot know how much data
would be processed in join clauses (hash join or nested loop join). However, after a query is executed, we
have a metric that we can use to get a sense of how complex it is. That metric is Total Memory, which is
the total amount of memory used on all nodes to process the query.

Thaed1ef-4153-8b0a-84cd-caelaard4400

Summary

Status:

(Total Meamory:
CPU Used: 01.08s5

Total Memory can be found in queries.json files. Therefore, it can be viewed and analyzed using DQA.
We can compare the relationship between query cost, Total memory, and execution time.

60 60

50 50 4

40 40

30 4 30 4

execution Time
execution Time

20 1 201

10 1 101

. ; . . ; . ‘
10° 10° 107 107 10" 10" 0 50000 100000 150000 200000 250000
Query Cost Total Memory

As you can see, Total Memory is more directly related to execution time than query cost.

dremio.com 8

Creating Multi-Engine Clusters
You can run this query to see what the range of allocatedMemory for queries in a queue

queleMame minkleminB) 90PctMem({MB) maxhem(MB)

High Cost User Queries 30110 22290 102185
Mid Cost User Queries 30110 43683 43825
Low Cost User Queries 11 101077 272099

As you can see, in the scenario above, mid-cost user queries are the most consistent when it comes to
memory allocation, ranging from 30 to 48GB. High-Cost User Queries memory allocation ranges from
30 to 102GB. Considering that they are allocated to the High-Cost User Query queue and the
concurrency is generally low (1-5), this is okay. However, the Low-Cost User queries range from
11MB-272GB. This is a vast range. If several large memory-consuming queries (270GB) run
simultaneously, it could significantly impact the health of the executor nodes as they may run out of
memory for other queries.

If query tuning is not possible to reduce the memory consumption, then breaking the default engine into
2 or more engines is recommended to help the system be more stable.

e Use DQA to identify queries that are extremely memory intensive and identify their query cost.
We hope that only 2 or 3 queries have such profiles.

e Write a WLM rule that selects those queries identified in the previous step and forwards them to
the High-Cost User Query queue. Since the HCUQ queue has a low concurrency, we ensure that
only a few of those queries are executed simultaneously. For example, this will be very specific,
but it is what we need.

e Create a SMALL-ENGINE to handle all Mid to High-cost user queries; the default engine can
handle all other queries.

e Create a High-Cost Engine to handle all high-cost queries with a low concurrency and identify
high memory usage queries to run with JDBC tags or different user id and use rules to assign
them to the High-Cost Engine.

This approach ensures that these memory-intensive queries are isolated and will not affect other
queries.

If having a separate engine for a few memory-intensive queries is not desirable, another option is the
redistribution of the workload by query cost. As a best practice, it is recommended that Low and
High-cost user queries should be split the user queries by 75% and 25%, respectively. If some
memory-intensive queries fall into the LCUQ queue, the high concurrency (e.g., 20) in LCUQ can allow
multiple queries to run simultaneously. You can distribute it by 70/30% or 65/35%. Let’s assume the
boundary query cost is 170M. You can run this query to see if any memory-intensive job would fall in
the LCUQ.

dremio.com 9

Creating Multi-Engine Clusters

Unset

selectmin(memoryAllocated) minMem, avg(memoryAllocated) avgMenm,
PERCENTILE_DISC(©.80) WITHIN GROUP (ORDER BY memoryAllocated ASC) "80thPercentileMem"”,
max(memoryAllocated) maxMem, count(*) cnt

fromSelectQUeryData

where queryCost < 170000000 and outcome="'COMPLETED'

1inMen avghen SthPercentileMen 1axhen cht

B 4,95322346545604049E5 1. 00275965E9 15793472532 5789

This shows that no query will consume more than 16GB of memory in the LCUQ queue. Since 80% of
gueries only consume 1GB of memory, and if you have a cluster of 10 nodes with Direct memory set to
110GB, you can easily allow a concurrency of 15-20 for LCUQ.

Creating a Multi-Engine cluster

This section shows how to create a multi-engine cluster. Creating a multi-engine cluster can be different
based on the type of deployment that you have. We will cover AWSE, Standalone, and K8s.

AWSE

In AWSE, creating a multi-engine cluster is very easy, and does not require a restart of the cluster.

Go to Setting — Engines and click on Add Engine

¥ Engines @ Add Engine
Status v Size v AWS Region v
Engine Size Type AWS Region Auto-Start Auto-Stop Queues Online Node
@ 2xdefaultEngine Small - 2 rbd.4xlarge us-west-1 High Cost User ... 0/2
@ SMALL_FAST_EN... Small- 2 mb5d.8xlarge us-west-1 High Cost Refle... c/2
@ default Small - 2 m5d.2xlarge us-west-1 c/2

In the Set Up Elastic Engine page, specify a name (e.g., Reflection Engine), the number of nodes, and the
type of the node. Ensure Auto-Start is set to ON. and Auto-Stop is also set to a reasonable value. (e.g.
2hrs). This way, the engine will shut itself down after 2 hours when not in use, and the cost of ownership

will be lowered.

dremio.com 10

Creating Multi-Engine Clusters

Set Up Elastic Engine X

Engine Name (D)

Engine Size (Nodes} (D)

Custom... ~
Number of Nodes (1) Engine Node Type (0
2 Standard m3d.8xlarge (32¢/128gh) v
Evaluation m5d.2xlarge {8c/32gb
Auto-Start 0] ge (Be/32g0)

Standard m5d.8xl 32c/128gb
Auto-Stop After (D) andard m5d.8xlarge (32c/128gb}
2 hours v High Memory r5d.dxlarge (16¢/128gb)
High CPU ¢5d.18xlarge (72¢/144gDb}

> Advanced Cptions High Cache i3.4xlarge (18¢/122gk}

Cancel

After you create the engine, use gueues and rules to route the reflection refresh jobs to the new engine.
This way, reflection refresh jobs will not take any resources from the engine running user queries.

Standalone VMs (Non-K8s)

In a standalone VM deployment, you must decide which nodes in your cluster should be part of the new
or the default engine.

For each of the nodes that you want to move to your new engine, login and modify the dremio.conf file
by adding this line in the services section....

node-tag: "ReflectionEngine"
For all other nodes,

node-tag: "default"

You do not need to restart the coordinator, but you need to restart each of the executors after you have
modified the dremio.conf file. Remember that the new engine will not appear on the Engines page of
Dremio Settings. However, on the Node Activity page, each node will have the new Engine name.

After you create the engine, use gueues and rules to route the reflection refresh jobs to the new engine.
This way, reflection refresh jobs will not take any resources from the engine running user queries.

dremio.com 1

https://docs.dremio.com/current/admin/workloads/workload-management/
https://docs.dremio.com/current/admin/workloads/workload-management/

Kubernetes (k8s)

Creating Multi-Engine Clusters

For creating different engines in K8s deployment, please refer to the helm charts provided by Dremio.

1. In the executor section, list the engines you want for your cluster.... For example..

Engines
Engine names be 47 characters or less and be lowercase alphanumber characters or "-7.

Note:

engines: ["default"”, "mdrefresh", "refrefresh"]

2. In the engineOverride section, you need to define the configuration of each engine... for example... 2
nodes in the default engine

He

B A A T R

R H ok

HeoFh e

dremio.com

default:

cpu:

Memory:

count:
annctations: |}
podfnnotations: {}
labels: {}
podLabels: [}
nodeselector: {}

tolerations: []
serviceAccount: "7

extraftartParams: >-
-DzomeCustonKey=someCustonvalue

extralnitContalners: |
- name: exXtra-init-container

image: {{ §.Values.image }}:{{ $.Values.imageTag |}
command: ["echo", "Hello World"™]

extravolumes: []

extravolumeMounts: []

volumeSize: 50G1
storageClass: managed-premium
volumeClaimiame: dremio-default-executor-volume

cloudCache:
enabled: true

storageClass: ""

volumes :
= name: "default-c3"
size: 10051
storageClass: ""

The number of executor pods will be the length of the array below * count.

12

https://github.com/dremio/dremio-cloud-tools/tree/master/charts/dremio_v2

Creating Multi-Engine Clusters
3. If you have different node groups for different engines, you can specify them in the nodeSelector.

volumeSize: 50G1

nodeSelector:
eks .amazonaws .com/hodegroup: dremio-ps-eks-exec—engZ-ng
node _kubernetes . ic/instance-type: mSd.B8xlarge

4. Save your helm chart and run helm install [deployment_name] .

Setting up Queues for Heartbeat queries

When working with Bl or reporting tools, setting up connection pool properties that check the
connection before issuing the query is common. With this setting, the server will submit a simple query,
e.g., “SELECT 1” to Dremio to ensure the connection is still alive before submitting the user query. A
good way to isolate these queries is to assign them to a Heartbeat Queue.

Queue and Job memory limits should be 30 and 10MB, respectively.

0

o Queues
MName * CPU Priarity Coneurrency Limit Chieue Memory Limit per Mode Job Memory Limit per Node
Heartheat Queries High o0 30 MB 10 MB

The cost of the “SELECT 1” query is 7. To assign these queries to the Heartbeat Queue, have a WLM rule
similar to
query cost() < 7 and query type() in ('JDBC', 'ODBC', 'Flight")

Edit Rule X

Mame
HeartBeat Rule

Conditions

| 1 query_cost{) <=7]and query_type() in ('JDBEC', is_member ("Engineering”) .
"ODBC', "Flight "
Leht® Job Types Example

Available types: JDBC, ODBC, Rest, Reflections,
| UI Run, UI Preview, UL Download, Internal
Preview, Internal Run, Flight, Metadata Refrash
query_type() IN {"JDBC', 'ODBC', "UL Run®,

Query Plan Cost Example
query cost({) > 1088888

Combined Conditions Example

Actlon
Reject Assign 1o gueue
Queue

Heartbeat Queries »

dremio.com 13

Creating Multi-Engine Clusters
Conclusion

Let's summarize our findings and recommendations here.

Separating out engines becomes mandatory when there is solid evidence of
1. Resource contentions between user queries and/or Dremio’s internal tasks (MD refresh and reflection
refresh jobs). This is evident in large sleep times when reviewing query profiles.
2. The standard deviation for metadata refreshes is higher than 50,000 for individual datasets.
3. The standard deviation for reflection refreshes is higher than 200000 for individual reflections.
4. Large Memory consumption (200GB+) by few queries.

These issues will affect the performance of queries which is considered the primary purpose of a data lake
engine. You can proactively set up multiple engines from the beginning to avoid the calculation and risk of
contention on your cluster.

On the first days of going live with your application, you may not observe any solid or consistent issues. For
example, a memory-intensive query that runs only once a day in the morning, may cause OUT_OF_MEMORY
errors for a few other queries which end users may just refresh their dashboards and ignore the problem. With
a proper load test or analysis of the cluster using Dremio Query Analyzer, you may find evidence of poor
performance due to resource contention.

Here are our recommendations if you have a cluster with 10-20 nodes.

e Separate Dremio’s internal jobs to their own engines.

e Wededicated 1to 4 nodes for the metadata refresh engine. Start with 1 node, and if the volume
of REFRESH DATASETS is high, then you can increase the size of the engine to 2 or 3 if required.
This is only recommended if your datasets are parquet files. Deltalake tables, JSON or CVS
files use the coordinator to refresh the metadata. Iceberg tables do not need metadata
refreshes.

e Setup 2 MD refresh queues for Low and High-Cost MD refresh jobs. The majority of MD refresh
jobs have a query cost of ~50M. Find the 75% boundary for query cost and configure the rules to
assign them to different queues.

5-10% of your cluster should be assigned to MD refresh jobs.

If after the MD refresh jobs have been isolated to their own engine and you are still observing
poor performance and resource contention, it is time to separate out an engine for Reflection
refreshes jobs. Start with 25% of the number of nodes in your cluster and dedicate it to the
Reflection Engine. If you have a cluster of 20 nodes, allocate 5 for the Reflection refresh engine.
Create Low and high-cost reflection queues and assign them to the new engine. You can check
the improvement by running the sample stddev query provided above.

20-30% of your cluster should be assigned to reflection refresh jobs.

The remaining 50-60%

dremio.com 14

