
Dremio Software

Creating
Multi-Engine Clusters

Introduction

When Dremio is installed, all executor nodes are assigned to a single default engine. This works well at
the beginning of a project, but workloads changewhen the semantic layer is promoted to the production
environment, and users query live datasets. This can cause resource contention even in large
environments with 20-30 executor nodes.

This document recommends when, why, and how to create amulti-engine cluster.

dremio.com

Creating Multi-Engine Clusters

Prerequisites

This document assumes Dremio has been installed, running, and configured for unlimited splits. This is
set by default for Dremio 21+.

The “Configure WLM based on Query Analysis” section also assumes you have DremioQuery Analyzer
running and its associated VDSs set up in Dremio. Please contact Dremio Professional Services for
details on how to receive the Query Analyzer tool. Version 24.3+ also provides a system table,
sys.jobs_recent, to get this information without using Query Analyzer.

This document also assumes that the user is familiar with DremioWLM, queryCost, query types, etc.

Out of Scope

This document does not discuss query memory management or tuning through Dremio’s support
options.

Default Engine

When Dremio is installed, there is only one execution engine which comprises all the executor nodes.
Advanced configuration for multi-engine setup cannot be delivered out of the box because each
organization's use case and needs are very different. The workloadwhich this single engine handles is:

● All the user queries (UI_RUN, JDBC/ODBC/Flight, REST API queries)
● All heartbeat query checks (e.g., “SELECT 1” from the reporting/BI tools)
● All catalog inquiries (queries fromBI/reporting tools to get information about the table metadata

or schema)
● All the reflection refreshes
● All themetadata refreshes

This document will mainly focus on handling the aboveminus the catalog inquiries. Catalog inquiries are
generally very light, and no query cost is associated with them.

Working with the Default Engine

In a development environment, the default engine can handle all these jobs because of the following
reasons:

● The data volume is generally smaller than the production environment.
● The number of datasets involved is lower than in the production environment.
● The data sets may not be updated with fresh data or not as frequently as in the production

environment.

dremio.com 2

https://docs.dremio.com/current/reference/sql/system-tables/jobs_recent

Creating Multi-Engine Clusters
● The number of users is limited to the number of developers and not the actual users in the

production environment.
● The load tests focus on volume testing or concurrency for user queries. During these tests, the

same reflection and the same dataset are used without considering that they may be getting
updated

● Intuitively, owners of the infrastructure want all nodes to be in the same engine so all nodes are
used, and there is less chance of a node remaining idle.

User queries can slow down as usage increases in the production environment because of resource
contention. Inconsistent long query response times are the first sign of resource contention. Metadata
and Reflection refresh jobs are system jobs run in the background. They are not monitored as closely as
user queries. Therefore, it is recommended to create multiple engines when setting up the production
environment.

Resource Contention

Resource contention happens when many jobs are running simultaneously, and all are contending to get
a portion of the server's resources (CPU, threads, memory, network bandwidth) to complete their work.

Dremio may be processing several queries and metadata refresh jobs as well as refreshing a reflection
simultaneously. Depending on the size of the dataset, number of source files, and available memory, all
these jobs could be fighting for limited resources.

With Resource contention, several things can be observedwhen you look at the query profile.

Long Sleep times Long Block Times LongWait Times

dremio.com 3

Creating Multi-Engine Clusters

Analyzing theWorkload

To analyze the workload, wewill make the following assumption in this section:

● Wehave a production environment, andmany users now access Dremio using a BI or a reporting

tool.

● Queries have been optimized to a satisfactory level.

● Theworkload on the server consists of user queries, reflection refresh jobs, andmetadata

refresh jobs

● WehaveDremioQuery Analyzer (DQA) installed or access to system tables.

The best tool to analyze the workload is DremioQuery Analyzer (DQA). It is also constructive to review

some of the troubling query profiles. DQA utilizes Dremio to read the query history in the “queries.json”

file(s).

Metadata Refresh Jobs

Start by focusing on the metadata refresh jobs (all jobs that start with REFRESH DATASET). Charting
the data per day, we can see an example scenario below:

Even when MD refresh jobs are not spending much time in the queue, we can see a massive execution
time range with MaxExecTime above 2000 seconds, and 80% of jobs are completing well over 60
seconds.

Typically, we expectMD refresh jobs to have an average exec time of 10-15 seconds, and 75% of the jobs
should be able to be completed in around 20 seconds max. Investigating job profiles should show that
the job spends most of its time in Sleep Time, which means it competes for resources with other jobs
running on the same engine.

dremio.com 4

Creating Multi-Engine Clusters
We can also run this query

select dsName, avg(executionTime) avgExecTime,
PERCENTILE_DISC(0.75) WITHIN GROUP (ORDER BY executionTime ASC) UpperPercentile
from MDRefreshData where outcome='COMPLETED'
group by 1 order by 2 desc

And the results….

This shows a huge variance of MD refresh executionTime (excludes planning, queue, and pool time) for
each of the datasets.

After configuring a separate engine for MD Refresh jobs, the results show that MD refresh jobs have a
muchmore predictable and consistent execution time.

dremio.com 5

Creating Multi-Engine Clusters
Running the same query to calculate the average and upper 75 percentile will give us the following
results.

Another way is to calculate an index calledWLMLoad.
select count(*) dsCount, sum(distance) totalDistance, sqrt (totalDistance/dsCount)
WLMLoad
from
(
select dsName,count(*) cnt,avg(executionTime) avgExec,
PERCENTILE_DISC(0.75) WITHIN GROUP (ORDER BY executionTime ASC) UpperPercentile,
(avgExec - UpperPercentile)*(avgExec - UpperPercentile) distance
from MDRefreshData
where outcome='COMPLETED'
group by 1
having stddev(executionTime) > 0
order by 1
) t1

WLMLoad calculation is as follows:

avgExec = avg execution time ofMDRefresh of each dataset
UpperPercentile = 75% executionTime ofMDRefresh of each dataset
dsCount = number of distinct datasets
Distance = (avgExec - UpperPercentile) ^ 2
WLMLoad = sqrt (sum of all distance) / dsCount
ForMetadata refresh jobs,WLMLoad should be less than 15000.

Metadata refresh jobs do not require amassive engine. A single node of the same class as other nodes in
the production environment can generally handle the task. If executor nodes have 16 cores/64GB
memory, theMD refresh node should be the same caliber.

If the datasets are parquet files, then you can refresh them by partitions, which will lighten the load even
further, as Dremio will only focus on the newly created partitions. Furthermore, if you have datasets
based onDeltaLake or Iceberg tables, ThenMD refresh jobs do not apply to them, and a separate engine
may not be required at all. DeltaLake tables are refreshed by the coordinator.

dremio.com 6

Unset

Creating Multi-Engine Clusters

Reflection Refresh Jobs

If after all metadata jobs have been assigned to their own engine and you are still experiencing long
sleep times, you can do the same exercise for reflection refresh jobs.

select reflection_id, STDDEV(executionTime) stddev
from ReflectionRefreshData where outcome='COMPLETED'
group by 1 order by 2 desc

Will provide these results:

As you can see, the stddev is very high for individual reflections. There is solid evidence for separating
an engine for Reflection refreshes jobs.

If stddev is larger than 200000(200 sec) in the top 10 or 15 records, then there is solid evidence that we
need to separate an engine for Reflection refresh.

dremio.com 7

Creating Multi-Engine Clusters

User Query Engines

Query cost is not directly related to the execution time of the query. It is possible for a query to have a
query cost of ~ 4E+15, and it can get executed on an engine <5 sec without reflections. Alternatively, a
query can have a cost of 4E+10 and run on a dedicated cluster for 4-5minutes.

It’s important to remember that query cost is an “estimate” calculated as the sum of the number of rows
(records) processed by each operator in each phase. Dremio’s planner cannot know how much data
would be processed in join clauses (hash join or nested loop join). However, after a query is executed, we
have a metric that we can use to get a sense of how complex it is. That metric is TotalMemory, which is
the total amount of memory used on all nodes to process the query.

Total Memory can be found in queries.json files. Therefore, it can be viewed and analyzed using DQA.
We can compare the relationship between query cost, Total memory, and execution time.

As you can see, Total Memory is more directly related to execution time than query cost.

dremio.com 8

Creating Multi-Engine Clusters
You can run this query to see what the range of allocatedMemory for queries in a queue

As you can see, in the scenario above, mid-cost user queries are the most consistent when it comes to
memory allocation, ranging from 30 to 48GB. High-Cost User Queries memory allocation ranges from
30 to 102GB. Considering that they are allocated to the High-Cost User Query queue and the
concurrency is generally low (1-5), this is okay. However, the Low-Cost User queries range from
11MB-272GB. This is a vast range. If several large memory-consuming queries (270GB) run
simultaneously, it could significantly impact the health of the executor nodes as they may run out of
memory for other queries.

If query tuning is not possible to reduce thememory consumption, then breaking the default engine into
2 ormore engines is recommended to help the system bemore stable.

● Use DQA to identify queries that are extremely memory intensive and identify their query cost.
We hope that only 2 or 3 queries have such profiles.

● Write a WLM rule that selects those queries identified in the previous step and forwards them to
the High-Cost User Query queue. Since the HCUQqueue has a low concurrency, we ensure that
only a few of those queries are executed simultaneously. For example, this will be very specific,
but it is what we need.

● Create a SMALL-ENGINE to handle all Mid to High-cost user queries; the default engine can
handle all other queries.

● Create a High-Cost Engine to handle all high-cost queries with a low concurrency and identify
high memory usage queries to run with JDBC tags or different user id and use rules to assign
them to the High-Cost Engine.

This approach ensures that these memory-intensive queries are isolated and will not affect other
queries.

If having a separate engine for a few memory-intensive queries is not desirable, another option is the
redistribution of the workload by query cost. As a best practice, it is recommended that Low and
High-cost user queries should be split the user queries by 75% and 25%, respectively. If some
memory-intensive queries fall into the LCUQ queue, the high concurrency (e.g., 20) in LCUQ can allow
multiple queries to run simultaneously. You can distribute it by 70/30% or 65/35%. Let’s assume the
boundary query cost is 170M. You can run this query to see if any memory-intensive job would fall in
the LCUQ.

dremio.com 9

Unset

Creating Multi-Engine Clusters

select min(memoryAllocated) minMem,avg(memoryAllocated) avgMem,
PERCENTILE_DISC(0.80) WITHIN GROUP (ORDER BY memoryAllocated ASC) "80thPercentileMem",
max(memoryAllocated) maxMem,count(*) cnt
from SelectQUeryData
where queryCost < 170000000 and outcome='COMPLETED'

This shows that no query will consume more than 16GB of memory in the LCUQ queue. Since 80% of
queries only consume 1GB of memory, and if you have a cluster of 10 nodes with Direct memory set to
110GB, you can easily allow a concurrency of 15-20 for LCUQ.

Creating a Multi-Engine cluster

This section shows how to create amulti-engine cluster. Creating amulti-engine cluster can be different
based on the type of deployment that you have. Wewill cover AWSE, Standalone, and K8s.

AWSE

In AWSE, creating amulti-engine cluster is very easy, and does not require a restart of the cluster.

Go to Setting→ Engines and click on Add Engine

In the Set Up Elastic Engine page, specify a name (e.g., Reflection Engine), the number of nodes, and the
type of the node. Ensure Auto-Start is set to ON. and Auto-Stop is also set to a reasonable value. (e.g.
2hrs). This way, the engine will shut itself down after 2 hours when not in use, and the cost of ownership
will be lowered.

dremio.com 10

Creating Multi-Engine Clusters

After you create the engine, use queues and rules to route the reflection refresh jobs to the new engine.
This way, reflection refresh jobs will not take any resources from the engine running user queries.

Standalone VMs (Non-K8s)

In a standalone VM deployment, you must decide which nodes in your cluster should be part of the new
or the default engine.

For each of the nodes that you want to move to your new engine, login and modify the dremio.conf file
by adding this line in the services section….

node-tag: "ReflectionEngine"

For all other nodes,

node-tag: "default"

You do not need to restart the coordinator, but you need to restart each of the executors after you have
modified the dremio.conf file. Remember that the new engine will not appear on the Engines page of
Dremio Settings. However, on the Node Activity page, each nodewill have the new Engine name.

After you create the engine, use queues and rules to route the reflection refresh jobs to the new engine.
This way, reflection refresh jobs will not take any resources from the engine running user queries.

dremio.com 11

https://docs.dremio.com/current/admin/workloads/workload-management/
https://docs.dremio.com/current/admin/workloads/workload-management/

Creating Multi-Engine Clusters

Kubernetes (k8s)
For creating different engines in K8s deployment, please refer to the helm charts provided by Dremio.
https://github.com/dremio/dremio-cloud-tools/tree/master/charts/dremio_v2
There are multiple sections in values.yaml file, which needs to be modified.

1. In the executor section, list the engines you want for your cluster…. For example..

2. In the engineOverride section, you need to define the configuration of each engine… for example… 2
nodes in the default engine

dremio.com 12

https://github.com/dremio/dremio-cloud-tools/tree/master/charts/dremio_v2

Creating Multi-Engine Clusters
3. If you have different node groups for different engines, you can specify them in the nodeSelector.

4. Save your helm chart and run helm install [deployment_name] .

Setting upQueues for Heartbeat queries

When working with BI or reporting tools, setting up connection pool properties that check the
connection before issuing the query is common. With this setting, the server will submit a simple query,
e.g., “SELECT 1” to Dremio to ensure the connection is still alive before submitting the user query. A
goodway to isolate these queries is to assign them to a Heartbeat Queue.

Queue and Jobmemory limits should be 30 and 10MB, respectively.

The cost of the “SELECT 1” query is 7. To assign these queries to the Heartbeat Queue, have a WLM rule
similar to
query_cost() < 7 and query_type() in ('JDBC','ODBC','Flight')

dremio.com 13

Creating Multi-Engine Clusters

Conclusion

Let’s summarize our findings and recommendations here.

Separating out engines becomes mandatory when there is solid evidence of
1. Resource contentions between user queries and/or Dremio’s internal tasks (MD refresh and reflection

refresh jobs). This is evident in large sleep times when reviewing query profiles.
2. The standard deviation for metadata refreshes is higher than 50,000 for individual datasets.
3. The standard deviation for reflection refreshes is higher than 200000 for individual reflections.
4. Large Memory consumption (200GB+) by few queries.

These issues will affect the performance of queries which is considered the primary purpose of a data lake
engine. You can proactively set up multiple engines from the beginning to avoid the calculation and risk of
contention on your cluster.

On the first days of going live with your application, you may not observe any solid or consistent issues. For
example, a memory-intensive query that runs only once a day in the morning, may cause OUT_OF_MEMORY
errors for a few other queries which end users may just refresh their dashboards and ignore the problem. With
a proper load test or analysis of the cluster using Dremio Query Analyzer, you may find evidence of poor
performance due to resource contention.

Here are our recommendations if you have a cluster with 10-20 nodes.

● Separate Dremio’s internal jobs to their own engines.

● Wededicated 1 to 4 nodes for themetadata refresh engine. Start with 1 node, and if the volume

of REFRESHDATASETS is high, then you can increase the size of the engine to 2 or 3 if required.

This is only recommended if your datasets are parquet files. Deltalake tables, JSON or CVS
files use the coordinator to refresh themetadata. Iceberg tables do not needmetadata
refreshes.

● Set up 2MD refresh queues for Low andHigh-CostMD refresh jobs. Themajority ofMD refresh

jobs have a query cost of ~50M. Find the 75% boundary for query cost and configure the rules to

assign them to different queues.

● 5-10% of your cluster should be assigned toMD refresh jobs.

● If after theMD refresh jobs have been isolated to their own engine and you are still observing

poor performance and resource contention, it is time to separate out an engine for Reflection

refreshes jobs. Start with 25% of the number of nodes in your cluster and dedicate it to the

Reflection Engine. If you have a cluster of 20 nodes, allocate 5 for the Reflection refresh engine.

Create Low and high-cost reflection queues and assign them to the new engine. You can check

the improvement by running the sample stddev query provided above.

● 20-30% of your cluster should be assigned to reflection refresh jobs.

● The remaining 50-60%

dremio.com 14

