Building a Data
Platform on Apache
Iceberg and Nessie

@ Us and them

e Serial entrepreneurs: from inception to IPO
through acquisition (founded Tooso in 2017,
joined Coveo in 2019, IPO 2021).

e LedAland MLOps at Coveo: 30+ research
contributions, including Nature, NeurlPS,
KDD, SIGIR, RecSys. ~2000 GitHub stars and

Mattia >1M downloads with Open Source projects.

Backed by And by founders and executives at

aWs -& di
5 docker é i

¥)" voLtroN DATA CLOUDZERA

7 innovation
Z endeavors

South Park
Commons

Bauplan 101

& A day 1in the life

sQL

query lake.sql

“expectations.py

ndrmalize_data.py

training dataset.sql

Apo is a Data Practitioner
who builds data pipelines
for a living

“predictions.py

Programs must be
written for people
to read, and only
incidentally for
machines to execute.

H. Abelson

Pipelines must be
written for people
to read, and only
incidentally for
cloud to execute

BAUPLAN

Serverless computing platform
for data transformation
pipelines.

We focus on mixed-language
tabular over
data lakes.

SQL and Python code

!

Business
applications

ML
Bauplan SDK

Bl

A,
@

Analytics

Data Lake

Open formats (e.g. Parquet,
Apache Iceberg)

Somebody else’s VPC

B AU P L AN SQL and P}{thon code

Business

& applications

SQL + Python.
Tables, not files!

ML
Bauplan SDK

Bl

Analytics

e Don’t move your data, we
come to you.

Data Lake

Open formats (e.g. Parquet,
Apache Iceberg)

Somebody else’s VPC

" Data development cycle

Data collection

|

Experimentation
How many lines of
J 1 extra code do you
need at each step?
Evaluation and

Deployment

|

Monitoring and
Response

" Data development cycle

Data collection -~

|

Experimentation
How long do you wait
to do a full loop?
Evaluation and

Deployment

|

Monitoring and
Response

How do we move with
production data
fast while not
breaking things?

From lake to
lakehouse

& People don’t think in files

1e schema: hive_schema
advertiser nbr: 0
order nb 1 0
creative nbr: BINARY 0
cx 'iv:_i.‘t BINARY 0
-0

model:

kw .]r»\,p 1 I

q:s'.'ernnrr_nb::
order_nb
creative nbr:
creative sz:
make:
I8

BINARY SNAPPY

l'::'-.' group 2: I IR::IQS%I]:GQITS:

advertiser nb
:':d:r nbr:

18478358/2400

:25055736/2617 ENC:

##fileformat= (BRY SAPPY 177751822 S2:31236535/3305 00 BNC:
#8FileDaten20 (ARY SNAPPY 1208986357 S2:16114299/165482 ENC:
"swrce,m;x_ AY SNREPY 225102656 $2:15978228/1613963 ENC

241080884 S 0€3766/29119648/ ENC:
##reference=f

##contig=<ID=
##phasing=par
F#INFO=<ID=NS BINARY SNAPPY
##INFO=<10D=DP r_nb BINARY SNAPPY
#HINFO=<ID=AF creative nbr: BINARY SNAPEY

:1903853/2442711/1.28 VC:
:2496674/2516632/1.0
©3155336/3447472/1

C: PLAIN_DICTIONARY, BIT_PACKED, RLE
PLAIN DICTIONARY,BIT PACKED,RLE

#RINFO=<ID=AA BINARY SNAFPY =
##INFO=<ID=DB BINARY SNAPPY netd o5 PLAIN_DICTIONARY,BIT 'PECKED.RLE
S4HINFO=<ID=H2 BINARY SNAPPY $2424547/2452588/1.01 cPLAIN_DICTIONARY,BIT_PACKED,RLE
##FILTER=<ID=

H#BFILTER=<ID=

HHFORMAT=<ID=

##FORMAT=<ID=GQ,Number=1, Type=Integer,Description="Genotype Quality"> R oS >
i AT § cify a
#4FORMAT=<1D=0P, Number-l Type-lnteger Descriptions"Read Depth”> Optional: FORMAT field specifying data

type + Per-sample genotype data

#CHROM POS ID REF QUAL FILTER INFO Fixed fields NAR2GA1 NAGOBO2 NAGOQD3
20 14376 rs6054257 G A 29 PASS N =14;AF=0.5;DB;H2 1GQ:DP:HQ ©]0:48:1:51,51 1[0:48:8:51,51 1/1:43:5:.,.
20 17330 . T A 3 q10 ©]0:49:3:58,50 ©]1:3:5:65,3 ©/0:41:3
20 1110696 rs6040355 A G6,T 67 PASS 1]2:21:6:23,27 2[1:2:0:18,2 2/2:35:4
20 1230237 . T W a7 PASS 0]0:54:7:56,60 ©]0:48:4:51,51 ©/0:61:2

20 1234567 microsatl GTC G,GTCT 5@ PASS ©/1:35:4 8/2:17:2 1/1:40:3

& They think in tables

We use Iceberg as our open format

e |arge user base. | ApaChe |Ceberg

e Large contribution base.

. o The Open table format for analytic datasets.
e Increasing Python compatibility.

%) COMMUNITY O GITHUB ¥ SLACK

From single tables to DAGs

SQL

query lake.sql

normalize data.py

training dataset.sql

A

These steps all :
predictions.py

create tables!

Iterating on a DAG

We use Nessie for DAG git-semantics.

e Version DAGS, not tables.

e \Work on production data.

e Move fast, but please don't break
things!

‘ Production data \

Debugging on a DAG
Gro) (O

Versioning

]+

Code Data dev

$ bauplan run --run=89186b10-6d2b-1lee-b962-0242ac120002

Running run 89186b10-6d2b-11ee-b962-0242ac120002 ...
L— booting

100%
L— table-1

— 100% . Production data

Building a serverless Data Lakehouse from spare parts*

Jacopo Tagliabue»**, Ciro Greco’ and Luca Bigon®!

Bauplan, New York City, United States
2Tandon School of Engineering, NYU, New York City, United States

Abstract

The recently proposed Data Lakehouse architecture is built on open file formats, performance, and first-class support for data
transformation, BI and data science: while the vision stresses the importance of lowering the barrier for data work, existing
implementations often struggle to live up to user expectations. At Bauplan, we decided to build a new serverless platform to
fulfill the Lakehouse vision. Since building from scratch is a challenge unfit for a startup, we started by re-using (sometimes
unconventionally) existing projects, and then investing in improving the areas that would give us the highest marginal gains
for the developer experience. In this work, we review user experience, high-level architecture and tooling decisions, and

https://www.bauplanlabs.com/
https://arxiv.org/pdf/2308.05368.pdf

BAUPLAN

