
Getting Started with Dremio
Data Reflections

EPISODE 23

● Senior Director of Eng, Dremio:
○ Query Planning and Reflection

● Previously:
○ Led data engineering groups at Samsung

Electronic USA
○ Founder of Data Technology startup
○ Oracle

● Technologist, Entrepreneur and Engineering Leader,
Coder

Tiong Lee
Sr. Director, Dremio

 2

● Traditional Data Architecture

● Introduction to Open Data Lakehouse

● Dremio Reflections

● Demo!

Today’s Agenda
Getting Started with
Dremio Data Reflections

3

4

Data Consumers

SQL

Data Science

Dashboards

Apps

Companies Want to Democratize Data… But How?
Data Providers

ADLS

S3

GCS

Data Lakes

RDBMS

Databases

NoSQL

▪ Everyone wants
access

▪ Data volumes are
exploding

▪ Security risks

▪ Compliance
requirements

▪ Limited resources

5

Data Consumers

SQL

Data Science

Dashboards

Apps

What are your options?
Semantic LayerData Providers Compute Layer

ADLS

S3

GCS

Data Lakes

RDBMS

Databases

NoSQL

✗ Complex

✗ Expensive

✗ Lock-in

✗ Impossible to
secure

✗ No self-service

✗ Limited data
exploration

✗ Inconsistent data

6 Confidential - Do Not Share or Distribute

Dremio’s Data Lakehouse is the Unified Access Layer

SALES MARKETING

SUPPLY CHAIN PRODUCT

HR FINANCE

Data Lakes

Databases

On-Prem

Reflections

Data Consumers

SQL

Data Science

Dashboards

Apps

⇅
 O

D
BC

 |
JD

BC
 |

RE
ST

 |
Ar

ro
w

 F
lig

ht
 ⇅

⇅
 P

ar
al

le
lis

m
 |

C
ac

hi
ng

 |
O

pt
im

iz
ed

 P
us

h-
D

ow
ns

 ⇅

7

What is Data Reflection in Dremio

● “Enhance query performance using user-defined relational caches”

● Relational caches = materialized-view = query plan + materializations

8

What is Data Reflection in Dremio

● “Enhance query performance using user-defined relational caches”

● Relational caches = materialized-view = query plan + materialization

SQL

3. Accelerate with

bypass
Physical/

Virtual Dataset

Relational
Caches

2. Manages/Refresh

1. Define reflection

9

Algebraic Matching

Query Plan Acceleration (Substitution) Process

Query Plan

Reflection A Reflection B

Substitute aa
materialization scan

Substitute with
materialization scan

Accelerated Plan

10

What can be accelerated

Reflection definition (total_by_store_id)

SELECT SUM(total) FROM orders o GROUP BY o.store_id - - on single table

Example of queries that can be accelerated

1. SELECT SUM(total) FROM orders GROUP BY store_id - - identity query

2. SELECT SUM(total) FROM View1 GROUP BY store_name - - joinable

3. SELECT SUM(total) FROM View1 GROUP BY store_state - - joinable with further aggregation

4. SELECT SUM(total) FROM View1 - - singularity

Order o.store_id = s.store_id
Order

order_id
store_id
total

Store

store_id
store_name
store_state

N 1

11

Advantages of Data Reflection

Semantic Layer
(Logical tier)

Derived Data
(physical tier)

Raw data

Traditional Approach New Approach

Data Consumers

Relational
Caches

12

Advantages of Data Reflection

Semantic Layer
(Logical tier)

Derived Data
(physical tier)

Raw data

Traditional Approach New Approach

Data Consumers

Relational
Caches

1. Simple
Usage and integration

2. Flexible
Optimize anytime

3. Cost
Everyone can share

relation caches

4. Easy
Less dataset, less

pipelines

13

Type of Reflections

Aggregate
Reflection

Raw
Reflection

External
Reflection

Dimensions,
measures

Full query External
process

Materialization MaterializationMaterialization

Confidential - Do Not Share or Distribute

Demo

17

TPCDS

Meet the data

CUSTOMER

c_customer_sk

CUSTOMER_ADDRESS

ca_zip
ca_date

DATE_DIM

d_year
d_moy

CUSTOMER_ DEMOGRAPHICS

cd_gender
cd_education_status

ITEM

item_desc

STORE_SALES

ss_ext_sales_price

STORE

s_store_name
s_zip
s_state

store_sk

date_sk

customer_sk

item_sk

address_sk

cdemo_sk

22

Advantages of Data Reflection

Semantic Layer
(Logical tier)

Derived Data
(physical tier)

Raw data

Traditional Approach New Approach

Data Consumers

Relational
Caches

1. Simple
Usage and integration

2. Flexible
Optimize anytime

3. Cost
Everyone can share

relation caches

4. Easy
Less dataset, less

pipelines

Thank
you!

