O'REILLY"

Apache Iceberg
The Definitive Guide

Data Lakehouse Functionality, Performance,
and Scalability on the Data Lake

Tomer Shiran,
Jason Hughes &
Alex Merced

Forewords by Gerrit Kozmaier,
Raghu Ramakrishnan & Rick Sears

O'REILLY"

Apache Iceberg:
The Definitive Guide

Traditional data architecture patterns are severely limited.
To use these patterns, you have to ETL data into each tool—
a cost-prohibitive process for making warehouse features
available to all of your data. The lack of flexibility with these
patterns requires you to lock into a set of priority tools and
formats, which creates data silos and data drift. This practical
book shows you a better way.

Apache Iceberg provides the capabilities, performance,
scalability, and savings that fulfill the promise of an open data
lakehouse. By following the lessons in this book, you'll be able
to achieve interactive, batch, machine learning, and streaming
analytics with this high-performance open source format.
Authors Tomer Shiran, Jason Hughes, and Alex Merced
from Dremio show you how to get started with Iceberg.

With this book, you'll learn:
¢ The architecture of Apache Iceberg tables

¢ What happens under the hood when you perform
operations on Iceberg tables

¢ How to further optimize Iceberg tables for
maximum performance

¢ How to use Iceberg with popular data engines
such as Apache Spark, Apache Flink, and Dremio

Discover why Apache Iceberg is a foundational technology
forimplementing an open data lakehouse.

“Anindispensable guide
to Apache Iceberg!”

—Mahdi Karabiben
Staff data engineer, Zendesk

Tomer Shiran is the founder and
chief product officer of Dremio, an
open data lakehouse platform that
enables companies to run analytics
in the cloud.

Jason Hughes is the director of
technical advocacy at Dremio. He
also served as a product director,
technical director, and a senior
solutions architect at Dremio.

Alex Merced is a developer advocate
for Dremio. He previously worked
as a developer and instructor for
companies like GenEd Systems,
Crossfield Digital, and CampusGuard.

DATA

ISBN: 978-1-098-14863-8

9‘781098 148638

linkedin.com/company/oreilly-media
youtube.com/oreillymedia

(dremio

The Unified
Lakehouse Platform for

Self-Service Analytics

Shift-Left Analytics for faster time
to insight at a fraction of the cost

Dremio is the Unified Lakehouse Platform for self-service analytics. Our Unified Analytics
Platform brings your users closer to the data with lakehouse flexibility, scalability, and
performance at a fraction of the cost. Dremio makes it easy to shift left, letting you
connect, govern and analyze all of your data, where it lives, at the speed of business.

il 1

Streamlined Revolutionary SQL Centralized data Seamless lakehouse
self-service analytics performance governance data management

Get started for free
at Dremio.com

https://www.dremio.com/
https://www.dremio.com/

Praise for Apache Iceberg: The Definitive Guide

This book is a fantastic learning resource and reference guide for
Apache Iceberg internals. My team finds it invaluable.

—Kaashif Hymabaccus, senior software engineet,
Bloomberg

Apache Iceberg is on track to become the de facto table format for

the next generation of data platforms. This book is an indispensable
guide to navigate through its core concepts and components, a journey
that most data engineers will have to take in the upcoming years.

—Mahdi Karabiben, staff data engineer,
Zendesk

Since the introduction of the data lakehouse, Apache Iceberg has
been on the rise. This book equips you with the core concepts of
Iceberg as a table format, gives you everything you need to run
it in production, and will still be your reference material months
after getting started. Well done, Tomer, Jason, and Alex!

—Max Schultze, associate director of data engineering,
HelloFresh

A comprehensive overview of Apache Iceberg from architecture
to design and implementation solutions.

—Simeon Schwarz, director, data and analytics,
OMS National Insurance Company

Apache Iceberg:
The Definitive Guide

Data Lakehouse Functionality, Performance,
and Scalability on the Data Lake

Tomer Shiran, Jason Hughes, and Alex Merced

Forewords by Gerrit Kazmaier, Raghu Ramakrishnan, and Rick Sears

Beijing « Boston « Farnham - Sebastopol - Tokyo [KON{={|HAE

Apache Iceberg: The Definitive Guide
by Tomer Shiran, Jason Hughes, and Alex Merced

Copyright © 2024 O’'Reilly Media Inc. All rights reserved.
Printed in the United States of America.
Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (https://oreilly.com). For more information, contact our corporate/institu-
tional sales department: 800-998-9938 or corporate@oreilly.com.

Acquisitions Editor: Aaron Black Indexer: Potomac Indexing, LLC
Development Editor: Gary O’Brien Interior Designer: David Futato
Production Editor: Elizabeth Faerm Cover Designer: Karen Montgomery
Copyeditor: Audrey Doyle lllustrator: Kate Dullea

Proofreader: Kim Wimpsett
May 2024: First Edition

Revision History for the Sponsored Edition
2024-03-18: First Release

See https://oreilly.com/catalog/errata.csp?isbn=9781098148621 for release details.

The O’Reilly logo is a registered trademark of O’'Reilly Media, Inc. Apache Iceberg: The Definitive Guide,
the cover image, and related trade dress are trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the authors, and do not represent the publisher’s views.
While the publisher and the authors have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the authors disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use
of or reliance on this work. Use of the information and instructions contained in this work is at your
own risk. If any code samples or other technology this work contains or describes is subject to open
source licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

This work is part of a collaboration between O’Reilly and Dremio. See our statement of editorial inde-
pendence.

978-1-098-14863-8
[LSI]

https://oreilly.com
https://oreilly.com/catalog/errata.csp?isbn=9781098148621
https://oreil.ly/editorial-independence
https://oreil.ly/editorial-independence

Table of Contents

Foreword by Gerrit Kazmaier.cooveiiiiiiiiiii it iiieiie e, Xiii
Foreword by Raghu Ramakrishnan.coiiiiiiiiiiiiiiiiiiiiinnenns. XV
Foreword by Rick Sears.ooiuniiiiiiiii ittt i e Xvii
Preface. . .ov et e Xix

Partl. Fundamentals of Apache Iceberg

1. Introduction to Apache lceberg..........ovvvniriiiiiiiiiiiiiiiiiiieiieenn, 3

How Did We Get Here? A Brief History 3
Foundational Components of a System Designed for OLAP Workloads 4
Bringing It All Together 7

The Data Warehouse 7
A Brief History 8
Pros and Cons of a Data Warehouse 8

The Data Lake 10
A Brief History 10
Pros and Cons of a Data Lake 12

Should I Run Analytics on a Data Lake or a Data Warehouse? 13

The Data Lakehouse 14

What Is a Table Format? 16

Hive: The Original Table Format 17

Modern Data Lake Table Formats 19

What Is Apache Iceberg? 20
How Apache Iceberg Came to Be 20

The Apache Iceberg Architecture
Key Features of Apache Iceberg
Conclusion

. The Architecture of Apache lceberg...................coett

The Data Layer
Datafiles
Delete Files

The Metadata Layer
Manifest Files
Manifest Lists
Metadata Files
Puffin Files

The Catalog

Conclusion

. Lifecycle of Write and Read Queries.............covvvvennnt

Writing Queries in Apache Iceberg
Create the Table
Insert the Query
Merge Query
Reading Queries in Apache Iceberg
The SELECT Query
The Time-Travel Query
Conclusion

. Optimizing the Performance of Iceberg Tables

Compaction
Hands-on with Compaction
Compaction Strategies
Automating Compaction
Sorting
Z-order
Partitioning
Hidden Partitioning
Partition Evolution
Other Partitioning Considerations
Copy-on-Write Versus Merge-on-Read
Copy-on-Write
Merge-on-Read
Configuring COW and MOR

22
23
27

29
30
31
32
35
35
36
38
40
42
43

45
46
47
50
54
57
58
61
65

67
67
69
74
76
76
80
82
84
85
86
87
87
88
90

vi

Table of Contents

Other Considerations 91

Metrics Collection 91
Rewriting Manifests 92
Optimizing Storage 93
Write Distribution Mode 95
Object Storage Considerations 96
Datafile Bloom Filters 97
Conclusion 98
5. lceberg Catalogs.c.ovvvnriiii i i i i i 99
Requirements of an Iceberg Catalog 99
Catalog Comparison 100
The Hadoop Catalog 100
The Hive Catalog 102
The AWS Glue Catalog 103
The Nessie Catalog 104
The REST Catalog 105
The JDBC Catalog 107
Other Catalogs 108
Catalog Migration 108
Using the Apache Iceberg Catalog Migration CLI 109
Using an Engine 110
Conclusion 114

Partll. Hands-on with Apache Iceberg

6. ApachesSpark........oovvriiiiiiiiii i i i i e 117
Configuration 117
Configuring Apache Iceberg and Spark 117
Configuring the Catalogs 119
Starting Spark with All the Configurations (AWS Glue Example) 122
Data Definition Language Operations 124
CREATE TABLE 124
ALTER TABLE 128
Alter a Table with Iceberg’s Spark SQL Extensions 130
DROP TABLE 133
Reading Data 133
The Select All Query 134
The Filter Rows Query 134
Aggregation Queries 134

Table of Contents | vii

Using Window Functions
Writing Data
INSERT INTO
MERGE INTO
INSERT OVERWRITE
DELETE FROM
UPDATE
Iceberg Table Maintenance Procedures
Expire Snapshots
Rewrite Datafiles
Rewrite Manifests
Remove Orphan Files
Conclusion

. Dremio’s SQL QueryEngine..............covviiiiiinnn,

Configuration
Data Definition Language Operations
CREATE TABLE
ALTER TABLE
DROP TABLE
Reading Data
Using the SELECT Query
Filtering Rows
Using Aggregated Queries
Using Window Functions
Writing Data
INSERT INTO
COPY INTO
MERGE INTO
DELETE
UPDATE
Iceberg Table Maintenance
Expire Snapshots
Rewrite Datafiles
Rewrite Manifests
Conclusion

B N Y €] -

Configuration
Creating a Glue Database
Configuring the Glue ETL Job

136
137
137
138
138
140
140
141
141
141
142
142
143

145
145
147
147
149
150
150
150
150
151
152
152
152
153
153
153
154
154
154
154
155
155

157
157
158
158

Table of Contents

Create a Table Using the Glue Data Catalog 161
Read the Table 161
Insert the Data 161

Conclusion 162

9. ApacheFlink......cciiniiniii i i i i i it e 163

Configuration 163
Prerequisites 163
Start the Flink Cluster and Flink SQL Client 165

Data Definition Language Operations 166
CREATE CATALOG 166
CREATE DATABASE 168
CREATE TABLE 169
ALTER TABLE 170
DROP TABLE 170

Reading Data 170
Flink SQL Batch Read 170
Flink SQL Streaming Read 171
Metadata Table 171

Writing Data 172
INSERT INTO 172
INSERT OVERWRITE 172
UPSERT 173

Flink DataFrame and Table API with Apache Iceberg Tables 174
Prerequisites 174
Configuring the Flink Job 174
Starting the Cluster and Building the Package 178
Running the Job 179

Conclusion 179

Partlll. Apache Icebergin Practice
10. Apache Icebergin Production..........ccovviiiiiiiiiiiiiiiiiiiiiiiiieee., 183

Apache Iceberg Metadata Tables 184
The history Metadata Table 184
The metadata_log_entries Metadata Table 186
The snapshots Metadata Table 187
The files Metadata Table 189
The manifests Metadata Table 192
The partitions Metadata Table 194

Table of Contents

ix

The all_data_files Metadata Table 196

The all_manifests Metadata Table 198
The refs Metadata Table 200
The entries Metadata Table 202
Using the Metadata Tables in Conjunction 204
Isolation of Changes with Branches 207
Table Branching and Tagging 208
Catalog Branching and Tagging 211
Multitable Transactions 213
Rolling Back Changes 214
Rolling Back at the Table Level 215
Rolling Back at the Catalog Level 218
Conclusion 219
11. Streaming with Apachelceberg..........covviiiiiiiiiiiiiiiiiiiii i 221
Streaming with Spark 222
Streaming into Iceberg with Spark 223
Streaming from Iceberg with Spark 225
Streaming with Flink 227
Streaming into Iceberg with Flink 228
Example of Streaming into Iceberg with Flink 233
Streaming with Kafka Connect 235
The Iceberg Kafka Sink 236
Streaming with AWS 239
Conclusion 242
12. Governance and SeCUNtY.vvereerieetiereieeeieerieeeereneeenneennes 243
Securing Datafiles 244
Securing Files: Best Practices 244
Hadoop Distributed File System 245
Amazon Simple Storage Service 246
Azure Data Lake Storage 251
Google Cloud Storage 254
Securing and Governing at the Semantic Layer 256
Semantic Layer Best Practices 256
Dremio 257
Trino 260
Securing and Governing at the Catalog Level 262
Nessie 263
Tabular 264
AWS Glue and Lake Formation 265

x | Tableof Contents

Additional Security and Governance Considerations 267

Conclusion 268
13. Migrating to Apachelceberg........c.ovviiiiiiiiiiiiiiiiiiiiiiiennnnnnn, 269
Migration Considerations 270
Three-Step In-Place Migration Plan 271
Four-Phase Shadow Migration Plan 272
Migrating Hive Tables to Apache Iceberg 272
The Snapshot Procedure 273
The Migrate Procedure 273
Migrating Delta Lake to Apache Iceberg 274
Migrating Apache Hudi to Apache Iceberg 275
Migrating Individual Files to Apache Iceberg 276
Using the add_files Procedure 276
Migrating from Delta Lake or Apache Hudi Without Preserving History =~ 277
Migrating from Anywhere by Rewriting Data 277
Migrating Data to a New Iceberg Table 278
Migrating Data into an Existing Iceberg Table 279
Conclusion 282
14. Real-World Use Cases of Apachelceberg...........coovvviiiiiiiiiiiiininnnn, 283
Ensuring High-Quality Data with Write- Audit-Publish in Apache Iceberg 283
WAP Using Iceberg’s Branching Feature 284
Running BI Workloads on the Data Lake 290
Land the Raw Data into the Data Lake 292
Curate Virtual Data Marts/Data Products 292
Create a Reflection to Accelerate Our Dashboard 293
Connect Our View to Our BI Tool 294
Benefits of Running BI Workloads on the Data Lake 294
Implementing Change Data Capture with Apache Iceberg 295
Create Apache Iceberg Tables 296
Apply Updates from Operational Systems 298
Create the Change Log View to Capture Changes 299
Merge Changed Data in the Aggregated Table 300
Conclusion 302
INAEX. 303

Table of Contents | xi

Foreword by Gerrit Kazmaier

As someone deeply invested in the evolution of data management, I am thrilled to
introduce this pivotal book on Apache Iceberg at a time when the industry is encoun-
tering complex challenges in managing data. Apache Iceberg, with its groundbreaking
open table format, is not just a technological advancement; it represents a significant
shift in how organizations can approach managing data in the Al era.

My involvement in the data community has allowed me to witness firsthand the
growing curiosity and demand for knowledge about data lakehouses and Apache
Iceberg. This book, therefore, arrives not just as an informative resource but as a
necessary guide for those eager to understand and apply this technology in their
work. It delves into the architecture of Apache Iceberg and extends to its practical
applications and best practices, serving as an indispensable tool for data architects
and engineers.

This book is more than just a compendium of information; it is a testament to
the evolving landscape of data management and a beacon for those navigating its
complexities. I am confident that it will be a valuable asset to anyone seeking to
leverage Apache Iceberg in the data architectures.

— Gerrit Kazmaier
Vice President and General Manager
Data analytics, Google Cloud

xXiii

Foreword by Raghu Ramakrishnan

Apache Iceberg is one of the leading open formats for updatable Parquet-based tables,
which are emerging as the new data storage standard for analytics. Historically,
relational databases have stored data row-by-row, packed into physical pages for
efficient I/O. Columnar table formats, however, have proven far more efficient for
query-intensive workloads. Data lakes began by supporting queries over columnar
formats such as Parquet, but of course, transactional updates must also be supported
efficiently to address traditional warehouse scenarios. Iceberg is emerging as a
popular choice of table format supporting scenarios that require query-intensive
workloads mixed with updates, and bulk ingests.

This timely and well-written book does an excellent job of presenting Iceberg, start-
ing from the basics and extending to the architecture and how to get the best
performance for a wide range of workloads, including SQL queries in Apache Spark
and Dremio, as well as stream processing in Apache Flink. It also includes a chapter
examining Iceberg in production settings, including the use of metadata tables and
features like branching, partitioning, and snapshots to handle complex scenarios at
scale. It should prove valuable to readers interested in Iceberg system development
and application developers using Iceberg (or a system based on Iceberg).

— Raghu Ramakrishnan
CTO for data, Microsoft
Technical fellow

XV

Foreword by Rick Sears

Data has become a central part of building modern software applications and grow-
ing modern data-driven organizations. Data engineers, data administrators, data
analysts, and data scientists are among the individuals in these organizations who
want to make more use of their data. Many of these data practitioners choose to build
their data-driven applications on Amazon Web Services (AWS), often choosing to
store their data in a data lake based on Amazon Simple Storage Service (S3).

These customers may want to change and manipulate their data over time while still
making use of the data while it’s changing and, therefore, build their applications with
support for transactional data lake technologies. Apache Iceberg is a key technology
used by AWS customers building transactional data lakes because it is fast, efficient,
and reliable at scale while also offering simple integrations with popular data process-
ing frameworks running on AWS such as Apache Spark, Apache Flink, Apache Hive,
Presto, Trino, Dremio, and more, as well as supported by AWS services such as
Amazon EMR, Amazon Redshift, Amazon Athena, AWS Glue, and others.

Apache Iceberg: The Definitive Guide has a focus on practical applications and scenar-
ios useful for data practitioners using Apache Iceberg and has hands-on exercises
that include using Iceberg with key AWS technologies, such as Amazon EMR and
AWS Glue, supporting Iceberg-specific optimizations that make it simple to build
and scale applications using Iceberg. The book covers the full gamut needed by
these practitioners, from the problems it aims to solve and the architecture powering
data-driven applications to best practices and real-world usages in AWS, so readers
can not only understand and experiment with Apache Iceberg but also get up and
running in production in very little time.

Xvii

The content in this book is based on discussions with AWS customers as well as the
broader community. As Apache Iceberg becomes more and more important to AWS
customers, I am excited for everyone to have this important reference to build, scale,
and optimize their applications using Iceberg.

— Rick Sears

General Manager, Amazon Web Services
Amazon EMR, Amazon Athena, AWS Lake
Formation, and AWS Glue Data Catalog

xvii | Foreword by Rick Sears

Preface

Welcome to Apache Iceberg: The Definitive Guide! We're delighted you have embarked
on this learning journey with us. In this preface, we provide an overview of this book,
why we wrote it, and how you can make the most of it.

About This Book

In these pages, you'll learn what Apache Iceberg is, why it exists, how it works, and
how to harness its power. Designed for data engineers, architects, scientists, and
analysts working with large datasets across various use cases from BI dashboards
to AI/ML, this book explores the core concepts, inner workings, and practical appli-
cations of Apache Iceberg. By the time you reach the end, you will have grasped
the essentials and possess the practical knowledge to implement Apache Iceberg
effectively in your data projects. Whether you are a newcomer or an experienced
practitioner, Apache Iceberg: The Definitive Guide will be your trusted companion on
this enlightening journey into Apache Iceberg.

Why We Wrote This Book

As we observed the rapid growth and adoption of the Apache Iceberg ecosystem,
it became evident that a growing knowledge gap needed to be addressed. Initially,
we began by sharing insights through a series of blog posts on the Dremio platform
to provide valuable information to the burgeoning Iceberg community. However,
it soon became clear that a comprehensive and centralized resource was essential
to meet the increasing demand for a definitive Iceberg reference. This realization
was the driving force behind the creation of Apache Iceberg: The Definitive Guide.
Our goal is to provide readers with a single authoritative source that bridges the
knowledge gap and empowers individuals and organizations to make the most of
Apache Iceberg’s capabilities in their data-related endeavors.

Xix

What You Will Find Inside

In the following chapters, you will learn what Apache Iceberg is and how it works,
how you can take advantage of the format with a variety of tools, and best practices
to manage the quality and governance of the data in Apache Iceberg tables. Here is a
summary of each chapter’s content:

Chapter 1, “Introduction to Apache Iceberg”
Exploration of the historical context of data lakehouses and the essential concepts
underlying Apache Iceberg.

Chapter 2, “The Architecture of Apache Iceberg”
Deep dive into the intricate design of Apache Iceberg, examining how its various
components function together.

Chapter 3, “Lifecycle of Write and Read Queries”
Examination of the step-by-step process involved in Apache Iceberg transactions,
highlighting updates, reads, and time-travel queries.

Chapter 4, “Optimizing the Performance of Iceberg Tables”
Discussions on maintaining optimized performance in Apache Iceberg tables
through techniques such as compaction and sorting.

Chapter 5, “Iceberg Catalogs”
In-depth explanation of the role of Apache Iceberg catalogs, exploring the differ-
ent catalog options available.

Chapter 6, “Apache Spark”
Practical sessions using Apache Spark to manage and interact with Apache Ice-
berg tables.

Chapter 7, “Dremios SQL Query Engine”
Exploration of the Dremio lakehouse platform, focusing on DDL, DML, and
table optimization for Apache Iceberg tables.

Chapter 8, AWS Glue”
Demonstration of the use of AWS Glue Catalog and AWS Glue Studio for work-
ing with Apache Iceberg tables.

Chapter 9, “Apache Flink”
Practical exercises in using Apache Flink for streaming data processing with
Apache Iceberg tables.

Chapter 10, “Apache Iceberg in Production”
Insights into managing data quality in production, using metadata tables for
table health monitoring and employing table and catalog versioning for various
operational needs.

xx | Preface

Chapter 11, “Streaming with Apache Iceberg”
Use of tools such as Apache Spark, Flink, and AWS Glue for streaming data
processing into Iceberg tables.

Chapter 12, “Governance and Security”
Exploration of the application of governance and security at various levels in
Apache Iceberg tables, such as storage, semantic layers, and catalogs.

Chapter 13, “Migrating to Apache Iceberg”
Guidelines on transforming existing datasets from different file types and data-
bases into Apache Iceberg tables.

Chapter 14, “Real-World Use Cases of Apache Iceberg”
A look at real-world applications of Apache Iceberg, including business intelli-
gence dashboards and implementing change data capture.

How to Use This Book

This book is meticulously crafted to enhance your understanding and practical skills
in Apache Iceberg, whether you're a beginner or an advanced user. While the book is
structured in a sequential manner, enabling you to build a comprehensive knowledge
base from start to finish, its design also accommodates flexible reading. Each chapter
is self-contained, allowing you to dive directly into specific topics or use cases of
interest without having to read the preceding chapters. This approach makes this
book an invaluable resource for both systematic learning and targeted, just-in-time
knowledge acquisition.

Throughout the book, you’ll find references to code snippets and practical examples.
To support your learning experience, we have established a dedicated GitHub reposi-
tory for the book. This repository is organized by chapter, ensuring that you have
easy access to all the necessary reference materials, code snippets, and examples
pertinent to each chapter’s content. Whether you are looking to understand the
architectural nuances of Apache Iceberg or seeking to implement specific functional-
ities, the repository serves as a complementary tool to enhance your learning and
application of concepts discussed in the book. For even more content, including
a bonus chapter on the Iceberg Java/Python APIs and additional Iceberg use case
overviews, visit this supplemental repository.

Whether you choose to read this guide cover to cover or focus on individual chapters
based on your immediate needs, this book is designed to be a comprehensive and
accessible resource on Apache Iceberg, enriched by practical, hands-on components
accessible through our accompanying GitHub repository.

Preface | xxi

https://oreil.ly/supp-guide-apache-iceberg
https://oreil.ly/supp-guide-apache-iceberg
https://oreil.ly/apache-ice_more-content

Feedback and Questions

We value your feedback and questions. If you have any issues, have suggestions for
improvement, or simply want to reach out to us, please don't hesitate to email us
at tech-advocacy@dremio.com. We also invite you to follow and connect with us on
LinkedIn.

Following is a list of additional resources for you to learn about Apache Iceberg and
get involved in the Apache Iceberg community:

o “Apache Iceberg 101” article and resource directory

o Apache Iceberg documentation

o Apache Iceberg GitHub repository

Iceberg Slack channel (see the Iceberg documentation for invitation)

Iceberg mailing list (see the Iceberg documentation to sign up)

Apache Iceberg Workshops LinkedIn page

The Apache Iceberg Blog Directory

Conventions Used in This Book

The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width
Used for program listings, as well as within paragraphs to refer to program
elements such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width bold
Shows commands or other text that should be typed literally by the user.

Constant width italic
Shows text that should be replaced with user-supplied values or by values deter-
mined by context.

xxii | Preface

mailto:tech-advocacy@dremio.com
https://oreil.ly/hDv4H
https://iceberg.apache.org
https://github.com/apache/iceberg
https://oreil.ly/WghwD
https://iceberg.apache.org/blogs

This element signifies a tip or suggestion.

This element signifies a general note.

Using Code Examples

Supplemental material (code examples, exercises, etc.) is available for download at
https://oreil.ly/supp-guide-apache-iceberg. For even more content, including a bonus
chapter on the Iceberg Java/Python APIs and additional Iceberg use case overviews,
visit https://oreil.ly/apache-ice_more-content.

If you have a technical question or a problem using the code examples, please send
email to support@oreilly.com.

This book is here to help you get your job done. In general, if example code is
offered with this book, you may use it in your programs and documentation. You
do not need to contact us for permission unless youre reproducing a significant
portion of the code. For example, writing a program that uses several chunks of code
from this book does not require permission. Selling or distributing examples from
O'Reilly books does require permission. Answering a question by citing this book
and quoting example code does not require permission. Incorporating a significant
amount of example code from this book into your product’s documentation does
require permission.

We appreciate, but generally do not require, attribution. An attribution usually
includes the title, author, publisher, and ISBN. For example: “Apache Iceberg: The
Definitive Guide by Tomer Shiran, Jason Hughes, and Alex Merced (O’Reilly). Copy-
right 2024 O’Reilly Media Inc., 978-1-098-14863-8”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

Preface | xxiii

https://oreil.ly/supp-guide-apache-iceberg
https://oreil.ly/apache-ice_more-content
mailto:support@oreilly.com
mailto:permissions@oreilly.com

0'Reilly Online Learning

o » For more than 40 years, O'Reilly Media has provided technol-
O REILLY ogy and business training, knowledge, and insight to help

companies succeed.

Our unique network of experts and innovators share their knowledge and expertise
through books, articles, and our online learning platform. O'Reilly’s online learning
platform gives you on-demand access to live training courses, in-depth learning
paths, interactive coding environments, and a vast collection of text and video from
O’Reilly and 200+ other publishers. For more information, visit https://oreilly.com.

How to Contact Us

Please address comments and questions concerning this book to the publisher:

O'Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-889-8969 (in the United States or Canada)
707-827-7019 (international or local)
707-829-0104 (fax)

support@oreilly.com
https://www.oreilly.com/about/contact.html

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at https://oreil.ly/apache-iceberg.

For news and information about our books and courses, visit https://oreilly.com.
Find us on LinkedIn: https://linkedin.com/company/oreilly-media.
Watch us on YouTube: https://youtube.com/oreillymedia.

xxiv | Preface

https://oreilly.com
https://oreilly.com
mailto:support@oreilly.com
https://www.oreilly.com/about/contact.html
https://oreil.ly/apache-iceberg
https://oreilly.com
https://linkedin.com/company/oreilly-media
https://youtube.com/oreillymedia

Acknowledgments

We would like to express our deepest gratitude to Dremio and O'Reilly Media
for providing us the opportunity to write this book. We would especially like to
extend our gratitude to our O’Reilly editor, Gary O’Brien, who always helped keep
us on the right track during the writing process. Thank you to our tech reviewers,
who held us accountable at every turn, making sure the book was accurate and
complete: Kamran Ali, Jai Balani, Michal Gancarski, Mahdi Karabiben, Kevin Kho,
Marc Laforet, Max Schultze, and Simeon Schwarz. Also, thanks for the contributions
of Dipankar Mazumdar.

We also sincerely thank our families, who were patient with us during long nights
writing and editing this book. Finally, wed like to thank the Apache Iceberg commu-
nity for developing one of the most exciting and transformative projects in data.

Thank you for choosing Apache Iceberg: The Definitive Guide. We hope you find it
both informative and enjoyable. Lets dive into the exciting world of Apache Iceberg
together!

Happy reading!

Preface | xxv

PART |
Fundamentals of Apache Iceberg

The first part of the book will cover the fundamentals of Apache Iceberg, including
topics such as the architecture of Iceberg tables, the lifecycle of read and write quer-
ies, and Iceberg catalogs. The goal is to establish a solid foundation of understanding
to build on for the subsequent parts of the book.

CHAPTER1
Introduction to Apache Iceberg

Data is a primary asset from which organizations curate the information and insights
needed to make critical business decisions. Whether it is used to analyze trends in
annual sales of a particular product or to predict future market opportunities, data
shapes the direction for organizations to follow to be successful. Further, today data
isn’t just a nice-to-have. It is a requirement, not just for winning in the market but
for competing in it. With such a massive demand for information, there has been an
enormous effort to accumulate the data generated by the various systems within an
organization to derive insights.

At the same time, the rate at which operational and analytical systems have been
generating data has skyrocketed. While more data has presented enterprises the
opportunity to make better-informed decisions, there is also a dire need to have
a platform that stores and analyzes all this data so that it can be used to build
analytical products such as business intelligence (BI) reports and machine learning
(ML) models to support decision making. Lakehouse architecture, which we will
elaborate on in this chapter, decouples how we store our data from how we process it
for more flexibility. This chapter will walk you through the history and evolution of
data platforms from a practical point of view and present the benefits of a lakehouse
architecture with Apache Iceberg open table formats.

How Did We Get Here? A Brief History

In terms of storage and processing systems, relational database management systems
(RDBMSs) have long been a standard option for organizations to keep a record of
all their transactional data. For example, say you run a transportation company and
you wanted to maintain information about new bookings made by your customers.
In this case, each new booking would be a new row in an RDBMS. RDBMSs used
for this purpose support a specific data processing category called online transaction

processing (OLTP). Examples of OLTP-optimized RDBMSs are PostgreSQL, MySQL,
and Microsoft SQL Server. These systems are designed and optimized to enable you
to interact very quickly with one or a few rows of data at a time and are a good choice
for supporting a business’s day-to-day operations.

But say you wanted to understand the average profit you made on all your new
bookings from the preceding quarter. In that case, using the data stored in an OLTP-
optimized RDBMS would have led to significant performance problems once your
data got large enough. Some of the reasons for this include the following:

» Transactional systems are focused on inserting, updating, and reading a small
subset of rows in a table, so storing the data in a row-based format is ideal. How-
ever, analytics systems usually focus on aggregating certain columns or working
with all the rows in a table, making a columnar structure more advantageous.

+ Running transactional and analytics workloads on the same infrastructure can
result in a competition for resources.

o Transactional workloads benefit from normalizing the data into several related
tables that are joined if needed, while analytics workloads may perform better
when the data is denormalized into the same table to avoid large-scale join
operations.

Now imagine that your organization had a large number of operational systems that
generated a vast amount of data and your analytics team wanted to build dashboards
that relied on aggregations of the data from these different data sources (i.e., applica-
tion databases). Unfortunately, OLTP systems are not designed to deal with complex
aggregate queries involving a large number of historical records. These workloads are
known as online analytical processing (OLAP) workloads. To address this limitation,
you would need a different kind of system optimized for OLAP workloads. It was this
need that prompted the development of the lakehouse architecture.

Foundational Components of a System Designed for OLAP Workloads

A system designed for OLAP workloads is composed of a set of technological com-
ponents that enable supporting modern-day analytical workloads, as showcased in
Figure 1-1 and described in the following subsections.

4 | Chapter 1: Introduction to Apache Iceberg

Storage engine] [Compute engine] [Catalog

Table format

File format

Storage

- J

Figure 1-1. Technical components supporting analytical workloads

Storage

To analyze historical data coming in from a variety of sources, you need to have a sys-
tem that allows you to store large to significant amounts of data. Therefore, storage is
the first component you would need in a system that can deal with analytical queries
on large datasets. There are many options for storage, including a local filesystem
on direct-attached storage (DAS); a distributed filesystem on a set of nodes that you
operate, such as the Hadoop Distributed File System (HDFS); and object storage
provided as a service by cloud providers, such as Amazon Simple Storage Service
(Amazon S3).

Regarding the types of storage, you could use row-oriented databases or columnar
databases, or you could mix the two in some systems. In recent years, columnar
databases have enjoyed tremendous adoption as they have proven to be more efficient
when dealing with vast volumes of data.

File format

For storage purposes, your raw data needs to be organized in a particular file format.
Your choice of file format impacts things such as the compression of the files, the data
structure, and the performance of a given workload.

File formats generally fall into three high-level categories: structured (CSV), semistruc-
tured (JSON), and unstructured (text files). In the structured and semistructured cate-
gories, file formats can be row oriented or column oriented (columnar). Row-oriented file
formats store all the columns of a given row together, while column-oriented file formats
store all the rows of a given column together. Two common examples of row-oriented file
formats are comma-separated values (CSV) and Apache Avro. Examples of columnar file
formats are Apache Parquet and Apache ORC.

How Did We Get Here? A Brief History | 5

Depending on the use case, certain file formats can be more advantageous than
others. For example, row-oriented file formats are generally better if you are dealing
with a small number of records at a time. In comparison, columnar file formats are
generally better if you are dealing with a sizable number of records at a time.

Table format

The table format is another critical component for a system that can support analyti-
cal workloads with aggregated queries on a vast volume of data. The table format acts
like a metadata layer on top of the file format and is responsible for specifying how
the datafiles should be laid out in storage.

Ultimately, the goal of a table format is to abstract the complexity of the physical
data structure and facilitate capabilities such as Data Manipulation Language (DML)
operations (e.g., doing inserts, updates, and deletes) and changing a table’s schema.
Modern table formats also bring in the atomicity and consistency guarantees required
for the safe execution of DML operations on the data.

Storage engine

The storage engine is the system responsible for actually doing the work of laying out
the data in the form specified by the table format and keeping all the files and data
structures up-to-date with the new data. Storage engines handle some of the critical

tasks, such as physical optimization of the data, index maintenance, and getting rid of
old data.

(atalog

When dealing with data from various sources and on a larger scale, it is important to
quickly identify the data you might need for your analysis. A catalog’s role is to tackle
this problem by leveraging metadata to identify datasets. The catalog is the central
location where compute engines and users can go to find out about the existence of
a table, as well as additional information such as the table name, table schema, and
where the table data is stored on the storage system. Some catalogs are internal to
a system and can only be directly interacted with via that system’s engine; examples
of these catalogs include Postgres and Snowflake. Other catalogs, such as Hive and
Project Nessie, are open for any system to use. Keep in mind that these metadata
catalogs aren’t the same as catalogs for human data discovery, such as Colibra, Atlan,
and the Dremio Software internal catalog.

Compute engine

The compute engine is the final component needed to efficiently deal with a massive
amount of data persisted in a storage system. A compute engine’s role in such a sys-
tem would be to run user workloads to process the data. Depending on the volume of

6 | Chapter 1: Introduction to Apache Iceberg

data, computation load, and type of workload, you can utilize one or more compute
engines for this task. When dealing with a large dataset and/or heavy computational
requirements, you might need to use a distributed compute engine in a processing
paradigm called massively parallel processing (MPP). A few examples of MPP-based
compute engines are Apache Spark, Snowflake, and Dremio.

Bringing It All Together

Traditionally for OLAP workloads, these technical components have all been tightly
coupled into a single system known as a data warehouse. Data warehouses allow
organizations to store data coming in from a variety of sources and run analytical
workloads on top of the data. In the next section, we will discuss in detail the
capabilities of a data warehouse, how the technical components are integrated, and
the pros and cons of using such a system.

The Data Warehouse

A data warehouse or OLAP database is a centralized repository that supports storing
large volumes of data ingested from various sources such as operational systems,
application databases, and logs. Figure 1-2 presents an architectural overview of the
technical components of a data warehouse.

(Consumption tools)

v

Storage engine]4—[Compute engine]—>[Catalog

Table format

v

File format

v

Storage

Data warehouse

Figure 1-2. Technical components of a data warehouse

The Data Warehouse | 7

A data warehouse owns all the technical components in a single system. In other
words, all the data is stored in its proprietary file and table formats on its proprietary
storage system. This data is then managed exclusively by the data warehouse’s storage
engine, is registered in its catalog, and can be accessed only by the user or analytical
engines through its compute engine.

A Brief History

Up until about 2015, most data warehouses had the storage and compute components
tightly coupled on the same nodes, since most were designed and run on premises.
However, this resulted in a lot of problems. Scaling became a big issue because
datasets grew in volume at an accelerating pace while the number and intensity of
workloads (i.e., compute tasks running on the warehouse) also increased. Specifically,
there was no way to independently increase the compute and storage resources
depending on your tasks. If your storage needs grew more quickly than your compute
needs, it didn’t matter. You still had to pay for additional compute even though you
didn’t need it.

This led to the next generation of data warehouses being built with a big focus on
the cloud. These data warehouses began gaining traction around 2015 as cloud-native
computing burst onto the scene, allowing you to separate the compute and storage
components and scale these resources to suit your tasks. They even allowed you to
shut down compute when you weren't using it and not lose your storage.

Pros and Cons of a Data Warehouse

While data warehouses, whether on premises or cloud based, make it easy for enter-
prises to quickly make sense of all their historical data, there are certain areas where a
warehouse still causes issues. Table 1-1 lists the pros and cons of a data warehouse.

Table 1-1. Pros and cons of a data warehouse

Pros Cons
Serves as the single source of truth as it allows storing and querying Locks the data into a vendor-specific system that
data from various sources only the warehouse’s compute engine can use

Supports querying vast amounts of historical data, enabling analytical ~ Expensive in terms of both storage and
workloads to run quickly computation; as the workload increases, the cost
becomes hard to manage

Provides effective data governance policies to ensure that data is Mainly supports structured data

available, usable, and aligned with security policies

Organizes the data layout for you, ensuring that it's optimized Does not enable organizations to natively run
for querying advanced analytical workloads such as ML

Ensures that data written to a table conforms to the technical schema

8 | Chapter 1: Introduction to Apache Iceberg

A data warehouse acts as a centralized repository for organizations to store all their
data coming in from a multitude of sources, allowing data consumers such as analysts
and BI engineers to access data easily and quickly from one single source to start
their analysis. In addition, the technological components powering a data warehouse
enable you to access vast volumes of data while supporting BI workloads to run on
top of it.

Although data warehouses have been elemental in the democratization of data and
allowed businesses to derive historical insights from varied data sources, they are pri-
marily limited to relational workloads. For example, returning to the transportation
company example from earlier, say that you wanted to derive insights into how much
you will make in total sales in the next quarter. In this case, you would need to build
a forecasting model using historical data. However, you cannot achieve this capability
natively with a data warehouse as the compute engine, and the other technical
components are not designed for ML-based tasks. So your main viable option would
be to move or export the data from the warehouse to other platforms supporting ML
workloads. This means you would have data in multiple copies, and having to create
pipelines for each data movement can lead to critical issues such as data drift and
model decay when pipelines move data incorrectly or inconsistently.

Another hindrance to running advanced analytical workloads on top of a data
warehouse is that a data warehouse only supports structured data. But the rapid
generation and availability of other types of data, such as semistructured and unstruc-
tured data (JSON, images, text, etc.), has allowed ML models to reveal interesting
insights. For our example, this could be understanding the sentiments of all the new
booking reviews made in the preceding quarter. This ultimately would impact an
organization’s ability to make future-oriented decisions.

There are also specific design challenges in a data warehouse. Returning to Fig-
ure 1-2, you can see that all six technical components are tightly coupled in a data
warehouse. Before you understand what that implies, an essential thing to observe
is that both file and table formats are internal to a particular data warehouse. This
design pattern leads to a closed form of data architecture. It means that the actual
data is accessible only using the data warehouse’s compute engine, which is specifi-
cally designed to interact with the warehouse’s table and file formats. This type of
architecture leaves organizations with a massive concern about locked-in data. With
the increase in workloads and the vast volumes of data ingested to a warehouse over
time, you are bound to that particular platform. And that means your analytical
workloads, such as BI and any future tools you plan to onboard, can only run on top
of this particular data warehouse. This also prevents you from migrating to another
data platform that can cater specifically to your requirements.

The Data Warehouse | 9

Additionally, a significant cost factor is associated with storing data in a data ware-
house and using the compute engines to process the data. This cost only increases
with time as you increase the number of workloads in your environment, thereby
invoking more compute resources. In addition to the monetary costs, there are other
overheads, such as the need for engineering teams to build and manage numerous
pipelines to move data from operational systems, and delayed time-to-insight on
the part of data consumers. These challenges have prompted organizations to seek
alternative data platforms that allow data to be within their control and stored in
open file formats, thereby allowing downstream applications such as BI and ML to
run in parallel with much-reduced costs. This led to the emergence of data lakes.

The Data Lake

While data warehouses provided a mechanism for running analytics on structured
data, they still had several issues:

o A data warehouse could only store structured data.

« Storage in a data warehouse is generally more expensive than on-prem Hadoop
clusters or cloud object storage.

o Storage and compute in traditional on-prem data warehouses are often commin-
gled and therefore cannot be scaled separately. More storage costs came with
more compute costs whether you needed the compute power or not.

Addressing these issues required an alternative storage solution that was cheaper
and could store all your data without the need to conform to a fixed schema. This
alternative solution was the data lake.

A Brief History

Originally, youd use Hadoop, an open source, distributed computing framework, and
its HDEFS filesystem component to store and process large amounts of structured and
unstructured datasets across clusters of inexpensive computers. But it wasn't enough
to just be able to store all this data. Youd want to run analytics on it too.

The Hadoop ecosystem included MapReduce, an analytics framework from which
youd write analytics jobs in Java and run them on the Hadoop cluster. Writing
MapReduce jobs was verbose and complex, and many analysts are more comforta-
ble writing SQL than Java, so Hive was created to convert SQL statements into
MapReduce jobs.

To write SQL, a mechanism to distinguish which files in your storage are part of a
particular dataset or table was needed. This resulted in the birth of the Hive table
format, which recognized a directory and the files inside it as a table.

10 | Chapter 1: Introduction to Apache Iceberg

Over time, people moved away from using Hadoop clusters to using cloud object
storage (e.g., Amazon S3, Minio, Azure Blob Storage), as it was easier to manage
and cheaper to use. MapReduce also fell out of use in favor of other distributed
query engines such as Apache Spark, Presto, and Dremio. What did stick around was
the Hive table format, which became the standard in the space for recognizing files
in your storage as singular tables on which you can run analytics. However, cloud
storage required more network costs in accessing those files, which the Hive format
architecture didn’t anticipate and which led to excessive network calls due to Hive’s
dependence on the table’s folder structure.

A feature that distinguishes a data lake from a data warehouse is the ability to
leverage different compute engines for different workloads. This is important because
there has never been a silver-bullet compute engine that is best for every workload
and that can scale compute independently of storage. This is just inherent to the
nature of computing, since there are always trade-offs, and what you decide to trade
off determines what a given system is good for and what it is not as well suited for.

Note that in data lakes, there isn't really any service that fulfills the needs of the
storage engine function. Generally, the compute engine decides how to write the data,
and then the data is usually never revisited and optimized, unless entire tables or
partitions are rewritten, which is usually done on an ad hoc basis. Figure 1-3 depicts
how the components of a data lake interact with one another.

(Consumption tools)

f v v)
‘ Compute engine ”H Catalog \
v *
Table format]
| ! v
File format]
Storage]
Data lake

Figure 1-3. Technical components of a data lake

TheDatalake | M

Pros and Cons of a Data Lake

Of course, no architectural pattern is perfect, and that applies to data lakes. While
data lakes have a lot of benefits, they also have several limitations. The following are
the benefits:

Lower cost
The costs of storing data and executing queries on a data lake are much lower
than in a data warehouse. This makes a data lake particularly useful for enabling
analytics on data whose priority isn't high enough to justify the cost of a data
warehouse, enabling a wider analytical reach.

Stores data in open formats
In a data lake, you can store the data in any file format you like, whereas in a
data warehouse, you have no say in how the data is stored, which would typically
be a proprietary format built for that particular data warehouse. This allows you
to have more control over the data and consume the data in a greater variety of
tools that can support these open formats.

Handles unstructured data
Data warehouses can’'t handle unstructured data such as sensor data, email
attachments, and logfiles, so if you wanted to run analytics on unstructured data,
the data lake was the only option.

These are the limitations:

Performance

Since each component of a data lake is decoupled, many of the optimizations
that can exist in tightly coupled systems are absent, such as indexes and ACID
(Atomicity, Consistency, Isolation, Durability) guarantees. While they can be
re-created, it requires a lot of effort and engineering to cobble the components
(storage, file format, table format, engines) in a way that results in performance
comparable to that of a data warehouse. This made data lakes undesirable for
high-priority data analytics where performance and time mattered.

Requires lots of configuration
As previously mentioned, creating a tighter coupling of your chosen components
with the level of optimizations youd expect from a data warehouse would require
significant engineering. This would result in a need for lots of data engineers to
configure all these tools, which can also be costly.

Lack of ACID transactions
One notable drawback of data lakes is the absence of built-in ACID transaction
guarantees that are common in traditional relational databases. In data lakes, data
is often ingested in a schema-on-read fashion, meaning that schema validation
and consistency checks occur during data processing rather than at the time of

12 | Chapter 1: Introduction to Apache Iceberg

ingestion. This can pose challenges for applications that require strong transac-
tional integrity, such as financial systems or applications dealing with sensitive
data. Achieving similar transactional guarantees in a data lake typically involves
implementing complex data processing pipelines and coordination mechanisms,
adding to the engineering effort required for critical use cases. While data lakes
excel at scalability and flexibility, they may not be the ideal choice when strict
ACID compliance is a primary requirement.

Table 1-2 summarizes these pros and cons.

Table 1-2. Pros and cons of a data lake

Pros Cons

Lower cost Performance

Stores data in open formats Lack of ACID guarantees
Handles unstructured data Lots of configuration required
Supports ML use cases

Should | Run Analytics on a Data Lake or a
Data Warehouse?

While data lakes provided a great place to land all your structured and unstructured
data, there were still imperfections. After running ETL (extract, transform, and load)
to land your data in your data lake, youd generally take one of two tracks when
running analytics.

For instance, you could set up an additional ETL pipeline to create a copy of a curated
subset of data that is for high-priority analytics and store it in the warehouse to get
the performance and flexibility of the data warehouse.

However, this results in a few issues:

« Additional costs in the compute for the additional ETL work and in the cost to
store a copy of data you are already storing in a data warehouse where the storage
costs are often greater

o Additional copies of the data, which may be needed to populate data marts for
different business lines and even more copies as analysts create physical copies of
data subsets in the form of BI extracts to speed up dashboards, leading to a web
of data copies that are hard to govern, track, and keep in sync

Alternatively, you could use query engines that support data lake workloads, such as
Dremio, Presto, Apache Spark, Trino, and Apache Impala, to execute queries on the
data lake. These engines are generally well suited for read-only workloads. However,
due to the limitations of the Hive table format, they run into complexity when trying
to update the data safely from the data lake.

Should | Run Analytics on a Data Lake or a Data Warehouse? | 13

As you can see, data lakes and data warehouses have their own unique benefits and
limitations. This necessitated the need to develop a new architecture that offers their
benefits while minimizing their faults, and that architecture is called a data lakehouse.

The Data Lakehouse

While using a data warehouse gave us performance and ease of use, analytics on
data lakes gave us lower costs, flexibility by using open formats, the ability to use
unstructured data, and more. The desire to thread the needle leads to great strides
and innovation, which leads to what we now know as the data lakehouse.

The data lakehouse architecture decouples the storage and compute from data lakes
and brings in mechanisms that allow for more data warehouse-like functionality
(ACID transactions, better performance, consistency, etc.). Enabling this functional-
ity are data lake table formats that eliminate all the previous issues with the Hive table
format. You store the data in the same places you would store it with a data lake,
you use the query engines you would use with a data lake, and your data is stored in
the same formats it would be stored in on a data lake. What truly transforms your
world from “read-only” data to a “center of my data world” data lakehouse is the table
format providing a metadata/abstraction layer between the engine and storage for
them to interact more intelligently (see Figure 1-4).

Table formats create an abstraction layer on top of file storage that enables better
consistency, performance, and ACID guarantees when working with data directly on
data lake storage, leading to several value propositions:

Fewer copies = less drift

With ACID guarantees and better performance you can now move workloads
typically saved for the data warehouse-like updates and other data manipulation
to the data lakehouse for reduced costs and data movement. If you move your
data to the lakehouse, you can have a more streamlined architecture with fewer
copies. Fewer copies means lower storage costs, lower compute costs from mov-
ing data to a data warehouse, less drift (the data model changes/breaking across
different versions of the same data), and better governance of your data to
maintain compliance with regulations and internal controls.

Faster queries = fast insights

The end goal is always to get business value through quality insights from our
data. Everything else is just steps to that end. If you can make faster queries,
that means you can get insights more quickly. Data lakehouses enable faster-
performing queries over data lakes and comparable data warehouses by using
optimizations at the query engine (cost-based optimizers, caching), table format
(better file skipping and query planning using metadata), and file format (sorting
and compression).

14 | Chapter 1: Introduction to Apache Iceberg

Historical data snapshots = mistakes that don’t hurt
Data lakehouse table formats maintain historical data snapshots, enabling the
possibility of querying and restoring tables to their previous snapshots. You can
work with your data and not have to be up at night wondering whether a mistake
will lead to hours of auditing, repairing, and then backfilling.

Affordable architecture = business value
There are two ways to increase profits: increase revenue and decrease costs. And
data lakehouses not only help you get business insights to drive up revenue,
but they also can help you decrease costs. This means you can reduce storage
costs by avoiding duplication of your data, avoid additional compute costs from
additional ETL work to move data, and enjoy lower prices for the storage and
compute you are using relative to typical data warehouse rates.

Open architecture = peace of mind
Data lakehouses are built on open formats, such as Apache Iceberg as a table
format and Apache Parquet as a file format. Many tools can read and write to
these formats, which allows you to avoid vendor lock-in. Vendor lock-in results
in cost creep and tool lock-out, where your data sits in formats that tools can't
access. By using open formats, you can rest easy, knowing that your data won’t be
siloed into a narrow set of tools.

(Consumption tools)

v

Y Y
— E—
Storage engine I ‘ Compute engine ”H Catalog
A 4 ‘

Table format

v

File format

v

Storage

Data lakehouse

\ J

Figure 1-4. Technical components of a data lakehouse

The Data Lakehouse | 15

To summarize, with modern innovations from the open standards previously dis-
cussed, the best of all worlds can exist by operating strictly on the data lake, and this
architectural pattern is the data lakehouse. The key component that makes all this
possible is the table format that enables engines to have the guarantees and improved
performance over data lakes when working with data that just didn’t exist before.
Now let’s turn the discussion to the Apache Iceberg table format.

What Is a Table Format?

A table format is a method of structuring a dataset’s files to present them as a unified
“table” From the user’s perspective, it can be defined as the answer to the question
“what data is in this table?”

This simple answer enables multiple individuals, teams, and tools to interact with the
data in the table concurrently, whether they are reading from it or writing to it. The
main purpose of a table format is to provide an abstraction of the table to users and
tools, making it easier for them to interact with the underlying data in an efficient
manner.

Table formats have been around since the inception of RDBMSs such as System
R, Multics, and Oracle, which first implemented Edgar Codd’s relational model,
although the term table format was not used at that time. In these systems, users
could refer to a set of data as a table, and the database engine was responsible for
managing the dataset’s byte layout on disk in the form of files, while also handling
complexities such as transactions.

All interactions with the data in these RDBMSs, such as reading and writing, are
managed by the database’s storage engine. No other engine can interact with the files
directly without risking system corruption. The details of how the data is stored are
abstracted away, and users take for granted that the platform knows where the data
for a specific table is located and how to access it.

However, in today’s big data world, relying on a single closed engine to manage all
access to the underlying data is no longer practical. Your data needs access to a variety
of compute engines optimized for different use cases such as BI or ML.

In a data lake, all your data is stored as files in some storage solution (e.g., Amazon
S3, Azure Data Lake Storage [ADLS], Google Cloud Storage [GCS]), so a single table
may be made of dozens, hundreds, thousands, or even millions of individual files
on that storage. When using SQL with our favorite analytical tools or writing ad
hoc scripts in languages such as Java, Scala, Python, and Rust, we wouldn't want
to constantly define which of these files are in the table and which of them aren’t.
Not only would this be tedious, but it would also likely lead to inconsistency across
different uses of the data.

16 | Chapter 1: Introduction to Apache Iceberg

So the solution was to create a standard method of understanding “what data is in
this table” for data lakes, as illustrated in Figure 1-5.

Data storage

DOD|(DDD|D
) e 1 e %

DOL|IBBO

Table A Table B

\ J o J J

\

Figure 1-5. Datafiles organized into tables using a table format

Hive: The Original Table Format

When it came to the world of running analytics on Hadoop data lakes, the Map-
Reduce framework was used, which required users to write complex and tedious
Java jobs, which wasn't accessible to many analysts. Facebook, feeling the pain of
this situation, developed a framework called Hive in 2009. Hive provided a key
benefit to make analytics on Hadoop much easier: the ability to write SQL instead of
MapReduce jobs directly.

The Hive framework would take SQL statements and then convert them into Map-
Reduce jobs that could be executed. To write SQL statements, there had to be a
mechanism for understanding what data on your Hadoop storage represented a
unique table, and the Hive table format and Hive Metastore for tracking these tables
were born.

The Hive table format took the approach of defining a table as any and all files within
a specified directory (or prefixes for object storage). The partitions of those tables
would be the subdirectories. These directory paths defining the table are tracked by
a service called the Hive Metastore, which query engines can access to know where to
find the data applicable to their query. This is illustrated in Figure 1-6.

Hive: The Original Table Format | 17

Hive metastore

| dbl.tablel

(/dbi/tablel

+ /dbijtablel/ki=A { [& /dbi/tablei/ki=B |
[db1/tablel/k1=Afk2=1| | /db1/tablel/k1=A/k2=2 [db1/tablel/k1=B/k2=1

=& || &

\

Figure 1-6. The architecture of a table stored using the Hive table format

The Hive table format had several benefits:

It enabled more efficient query patterns than full table scans, so techniques such
as partitioning (dividing the data based on a partitioning key) and bucketing (an
approach to partitioning or clustering/sorting that uses a hash function to evenly
distribute values) made it possible to avoid scanning every file for faster queries.

It was file format agnostic, so it allowed the data community over time to develop
better file formats, such as Apache Parquet, and use them in their Hive tables. It
also did not require transformation prior to making the data available in a Hive
table (e.g., Avro, CSV/TSV).

Through atomic swaps of the listed directory in the Hive Metastore, you can
make all-or-nothing (atomic) changes to an individual partition in the table.

Over time, this became the de facto standard, working with most data tools and
providing a uniform answer to “what data is in this table?”

While these benefits were significant, there were also many limitations that became
apparent as time passed:

o File-level changes are inefficient, since there was no mechanism to atomically

swap a file in the same way the Hive Metastore could be used to swap a partition
directory. You are essentially left making swaps at the partition level to update a
single file atomically.

18

| Chapter 1: Introduction to Apache Iceberg

o While you could atomically swap a partition, there wasnt a mechanism for
atomically updating multiple partitions as one transaction. This opens up the
possibility for end users seeing inconsistent data between transactions updating
multiple partitions.

o There really aren’t good mechanisms to enable concurrent simultaneous updates,
especially with tools beyond Hive itself.

o An engine listing files and directories was time-consuming and slowed down
queries. Having to read and list files and directories that may not need scanning
in the resulting query comes at a cost.

o Partition columns were often derived from other columns, such as deriving a
month column from a timestamp. Partitioning helped only if you filtered by the
partition column, and someone who has a filter on the timestamp column may
not intuitively know to also filter on the derived month column, leading to a full
table scan since partitioning was not taken advantage of.

o Table statistics would be gathered through asynchronous jobs, often resulting in
state table statistics, if any statistics were available at all. This made it difficult for
query engines to further optimize queries.

« Since object storage often throttles requests against the same prefix (think of an
object storage prefix as analogous to a file directory), queries on tables with large
numbers of files in a single partition (so that all the files would be in one prefix)
can have performance issues.

The larger the scale of the datasets and use cases, the more these problems would be
amplified. This resulted in significant pain in need of a new solution, so newer table
formats were created.

Modern Data Lake Table Formats

In seeking to address the limitations of the Hive table format, a new generation of
table formats arose with different approaches in solving the problems with Hive.

Creators of modern table formats realized the flaw that led to challenges with the
Hive table format was that the definition of the table was based on the contents of
directories, not on the individual datafiles. Modern table formats such as Apache
Iceberg, Apache Hudi, and Delta Lake all took this approach of defining tables as
a canonical list of files, providing metadata for engines informing which files make
up the table, not which directories. This more granular approach to defining “what
is a table” unlocked the door to features such as ACID transactions, time travel,
and more.

Modern Data Lake Table Formats | 19

Modern table formats all aim to bring a core set of major benefits over the Hive
table format:

o They allow for ACID transactions, which are safe transactions that either com-
plete in full or are canceled. In legacy formats such as the Hive table format,
many transactions could not have these guarantees.

+ They enable safe transactions when there are multiple writers. If two or more
writers write to a table, there is a mechanism to make sure the writer that
completes their write second is aware of and considers what the other writer(s)
have done to keep the data consistent.

o They offer better collection of table statistics and metadata that can allow a query
engine to plan scans more efficiently so that it will need to scan fewer files.

Let’s explore what Apache Iceberg is and how it came to be.

What Is Apache Iceberg?

Apache Iceberg is a table format created in 2017 by Netflix’s Ryan Blue and Daniel
Weeks. It arose from the need to overcome challenges with performance, consistency,
and many of the challenges previously stated with the Hive table format. In 2018, the
project was made open source and was donated to the Apache Software Foundation,
where many other organizations started getting involved with it, including Apple,
Dremio, AWS, Tencent, LinkedIn, and Stripe. Many additional organizations have
contributed to the project since then.

How Apache Iceberg Came to Be

Netflix, in the creation of what became the Apache Iceberg format, concluded that
many of the problems with the Hive format stemmed from one simple but funda-
mental flaw: each table is tracked as directories and subdirectories, limiting the
granularity that is necessary to provide consistency guarantees, better concurrency,
and several of the features that often are available in data warehouses.

With this in mind, Netflix set out to create a new table format with several goals in
mind:

Consistency
If updates to a table occur over multiple partitions, it must not be possible for
end users to experience inconsistency in the data they are viewing. An update to
a table across multiple partitions should be done quickly and atomically so that
the data is consistent to end users. They see the data either before the update or
after the update, and not in between.

20 | Chapter 1: Introduction to Apache Iceberg

Performance
With Hive's file/directory listing bottleneck, query planning would take exces-
sively long to complete before actually executing the query. The table should
provide metadata and avoid excessive file listing so that not only can query
planning be a faster process, but also the resulting plans can be executed more
quickly since they scan only the files necessary to satisfy the query.

Easy to use
To get the benefits of techniques such as partitioning, end users should not have
to be aware of the physical structure of the table. The table should be able to
give users the benefits of partitioning based on naturally intuitive queries and
not depend on filtering extra partition columns derived from a column they
are already filtering by (e.g., filtering by a month column when you've already
filtered the timestamp it is derived from).

Evolvability
Updating schemas of Hive tables could result in unsafe transactions, and updat-
ing how a table is partitioned would result in a need to rewrite the entire table.
A table should be able to evolve its schema and partitioning scheme safely and
without the need for rewriting.

Scalability
All the preceding goals should be able to be accomplished at the petabyte scale of
Netflix’s data.

So the team began creating the Iceberg format, which focuses on defining a table
as a canonical list of files instead of tracking a table as a list of directories and
subdirectories. The Apache Iceberg project is a specification, or a standard of how
metadata defining a data lakehouse table should be written across several files. To
support the adoption of this standard, Apache Iceberg has many support libraries to
help individuals work with the format or compute engines to implement support.
Along with these libraries, the project has created implementations for open source
compute engines such as Apache Spark and Apache Flink.

Apache Iceberg aims for existing tools to embrace the standard and is designed to
take advantage of existing, popular storage solutions and compute engines in the
hope that existing options will support working with the standard. The purpose of
this approach is to let the ecosystem of existing data tools build out support for
Apache Iceberg tables and let Iceberg become the standard for how engines can
recognize and work with tables on the data lake. The goal is for Apache Iceberg
to become so ubiquitous in the ecosystem that it becomes another implementation
detail that many users don't have to think about. They just know they are working
with tables and don't need to think about it beyond that, regardless of which tool
they are using to interact with the table. This is already becoming a reality as many
tools allow end users to work with Apache Iceberg tables so easily that they don't

What Is Apache Iceberg? | 21

need to understand the underlying Iceberg format. Eventually, with automated table
optimization and ingestion tools, even more technical users such as data engineers
won’t have to think as much about the underlying format and will be able to work
with their data lake storage in the way they’ve worked with data warehouses, without
ever dealing directly with the storage layer.

The Apache Iceberg Architecture

Apache Iceberg tracks a table’s partitioning, sorting, schema over time, and so much
more using a tree of metadata that an engine can use to plan queries at a fraction of the
time it would take with legacy data lake patterns. Figure 1-7 depicts this tree of metadata.

Iceberg catalog
dbl.tablel
Current metadata pointer

Metadata layer

Metadata Metadata
file file
C)0)
|
v
N
Manifest Manifest
list
'
v v
Manifest Manifest Manifest
file file file

Data layer

Figure 1-7. The Apache Iceberg architecture

22 | Chapter 1: Introduction to Apache Iceberg

This metadata tree breaks down the metadata of the table into four components:

Manifest file
A list of datafiles, containing each datafile’s location/path and key metadata about
those datafiles, which allows for creating more efficient execution plans.

Manifest list
Files that define a single snapshot of the table as a list of manifest files along with
stats on those manifests that allow for creating more efficient execution plans.

Metadata file
Files that define a table’s structure, including its schema, partitioning scheme,
and a listing of snapshots.

Catalog
Tracks the table location (similar to the Hive Metastore), but instead of contain-
ing a mapping of table name -> set of directories, it contains a mapping of table
name -> location of the table’s most recent metadata file. Several tools, including
a Hive Metastore, can be used as a catalog, and we have dedicated Chapter 5 to
this subject.

Each of these files will be covered in more depth in Chapter 2.

Key Features of Apache Iceberg

Apache Iceberg’s unique architecture enables an ever-growing number of features that
go beyond just solving the challenges with Hive and instead unlock entirely new
functionality for data lakes and data lakehouse workloads. In this section, we provide
a high-level overview of key features of Apache Iceberg. We'll go into more depth on
these features in later chapters.

ACID transactions

Apache Iceberg uses optimistic concurrency control to enable ACID guarantees,
even when you have transactions being handled by multiple readers and writers.
Optimistic concurrency assumes transactions won’t conflict and checks for conflicts
only when necessary, aiming to minimize locking and improve performance. This
way, you can run transactions on your data lakehouse that either commit or fail and
nothing in between. A pessimistic concurrency model, which uses locks to prevent
conflicts between transactions, assuming conflicts are likely to occur, was unavailable
in Apache Iceberg at the time of this writing but may be coming in the future.

Concurrency guarantees are handled by the catalog, as it is typically a mechanism
that has built-in ACID guarantees. This is what allows transactions on Iceberg tables
to be atomic and provide correctness guarantees. If this didn’t exist, two different
systems could have conflicting updates, resulting in data loss.

What Is Apache Iceberg? | 23

Partition evolution

A big headache with data lakes prior to Apache Iceberg was dealing with the need
to change the table’s physical optimization. Too often, when your partitioning needs
to change, the only choice you have is to rewrite the entire table, and at scale this
can get very expensive. The alternative is to just live with the existing partitioning
scheme and sacrifice the performance improvements a better partitioning scheme can
provide.

With Apache Iceberg you can update how the table is partitioned at any time without
the need to rewrite the table and all its data. Since partitioning has everything to do
with the metadata, the operations needed to make this change to your table’s structure
are quick and cheap.

Figure 1-8 depicts a table that was initially partitioned by month and then evolved to
partition based on day going forward. The previously written data remains in month
partitions while new data is written in day partitions, and in a query, the engine
makes a plan for each partition based on the partition scheme applied to it.

(O =Partitions included in plan for query
Example query

SELECT * FROM booking_table
WHERE
date > 2008-12-14 AND
date < 2009-01-14

Split plan1 Splitplan2

booking_table v Partition spec changes

v
Partitioned by month (date) } Partitioned by day (date)

P51 50l 2008-12-01) 2009-01...

112]13]4]5
718

Ja

t Pt
2009-01-01

\ y,
L. >

Figure 1-8. Partition evolution

24 | Chapter 1: Introduction to Apache Iceberg

Hidden partitioning

Sometimes users don’t know how a table is physically partitioned, and frankly, they
shouldn’t have to care. Often a table is partitioned by some timestamp field and a
user wants to query by that field (e.g., get average revenue by day for the last 90
days). To a user, the most intuitive way to do that is to include a filter of event_time
stamp >= DATE_SUB(CURRENT_DATE, INTERVAL 90 DAY). However, this will result
in a full table scan because the table is actually partitioned by separate fields called
event_year, event_month, and event_day. This occurs because partitioning on a
timestamp results in tiny partitions since the values are at second, millisecond, or
lower granularity.

This problem is resolved by how Apache Iceberg handles partitioning. In Iceberg,
partitioning occurs in two parts: the column, which physical partitioning should be
based on; and an optional transform to that value including functions such as bucket,
truncate, year, month, day, and hour. The ability to apply a transform eliminates
the need to create new columns just for partitioning. This results in more intuitive
queries benefiting from partitioning as consumers will not need to add extra filter
predicates to their queries on additional partitioning columns.

In Figure 1-9, let’s assume the table is using day partitioning. The query depicted
in the figure would result in a full table scan in Hive since another “day” column
was probably created for partitioning, while in Iceberg the metadata would track the
partitioning as “the transformed value of CURRENT_DATE” and therefore would use the
partitioning when filtering by CURRENT_DATE (we will discuss this in more detail later
in the book).

SELECT EXTRACT(DAY FROM order_ts), SUM(order_amount)
FROM orders

WHERE order_ts >= DATE_SUB(CURRENT_DATE, INTERVAL 3@ DAY)
GROUP BY 1

T

ive

()))l

Mm]m)

(1) (T ()
(1) (1) (1)

\ J \ J

Figure 1-9. The benefits of partitioning in Apache Iceberg

What Is Apache Iceberg? | 25

Row-level table operations

You can optimize the table’s row-level update patterns to take one of two forms:
copy-on-write (COW) or merge-on-read (MOR). When using COW, for a change
of any row in a given datafile, the entire file is rewritten (with the row-level change
made in the new file) even if a single record in it is updated. When using MOR, for
any row-level updates, only a new file that contains the changes to the affected row
that is reconciled on reads is written. This gives flexibility to speed up heavy update
and delete workloads.

Time travel

Apache Iceberg provides immutable snapshots, so the information for the table’s
historical state is accessible, allowing you to run queries on the state of the table at a
given point in time in the past, or what's commonly known as time travel. This can
help you in situations such as doing end-of-quarter reporting without the need for
duplicating the table’s data to a separate location or for reproducing the output of an
ML model as of a certain point in time. This is depicted in Figure 1-10.

Snapshot 1 Snapshot 2 Snapshot 3
'2023-0710 ‘2023-08-10° '2023-10-10°

Normal
query

Figure 1-10. Querying the table as it was using time travel

Version rollback

Not only does Icebergs snapshot isolation allow you to query the data as it is, but
it also reverts the table’s current state to any of those previous snapshots. Therefore,
undoing mistakes is as easy as rolling back (see Figure 1-11).

1 Bob 46 Jan. 1st, 2023 1 Bob 46 Jan. 1st, 2023
2| Josie [65 [Jan.10th2023| poppex, | 2 | Jose [65 [ian.10th 2023
3 Gene 30 |Jan.20th, 2023 v 3 Gene 30 |Jan.20th, 2023
4
5

Alex 37 |Feb.2nd, 2023
Tony 34 |Feb,15th, 2023

Figure 1-11. Moving the table’s state to a previous point in time by rolling back

26 | Chapter 1: Introduction to Apache Iceberg

Schema evolution

Tables change, whether that means adding/removing a column, renaming a column,
or changing a columns data type. Regardless of how your table needs to evolve,
Apache Iceberg gives you robust schema evolution features—for example, updating
an int column to a long column as values in the column get larger.

Conclusion

In this chapter, you learned that Apache Iceberg is a data lakehouse table format built
to improve upon many of the areas where Hive tables were lacking. By decoupling
from relying on the physical structure of files along with its multilevel metadata tree,
Iceberg is able to provide Hive transactions, ACID guarantees, schema evolution,
partition evolution, and several other features enabling the data lakehouse. The
Apache Iceberg project is able to do this by building a specification and supporting
libraries that let existing data tools build support for the open table format.

In Chapter 2, we'll take a deep dive into Apache Iceberg’s architecture that makes all
this possible.

Conclusion | 27

CHAPTER 2
The Architecture of Apache Iceberg

In this chapter, we'll discuss the architecture and specification that enable Apache
Iceberg to resolve the problems inherent in the Hive table format by looking under
the covers of an Iceberg table. We'll cover the different structures of an Iceberg
table and what each structure provides and enables so that you can understand
what’s happening under the hood as well as best architect your Apache Iceberg-based
lakehouse.

As mentioned in Chapter 1, there are three different layers of an Apache Iceberg
table: the catalog layer, the metadata layer, and the data layer. Figure 2-1 shows the
different components that make up each layer.

In the following sections, we'll go through each of these components in detail. Since it
can be easier to understand concepts new to you by starting with a familiar one, we'll
work from the bottom up, starting with the data layer.

29

Iceberg catalog
dbl.tablel
Current metadata pointer

Metadata layer

Metadata

Metadata
file

v
N

Manifest Manifest

list list
——]

| T

Manifest Manifest
file file

Data layer

Figure 2-1. The architecture of an Apache Iceberg table

The Data Layer

The data layer of an Apache Iceberg table is what stores the actual data of the table
and is primarily made up of the datafiles themselves, although delete files are also
included. The data layer is what provides the user with the data needed for their
query. While there are some exceptions where structures in the metadata layer can
provide a result (e.g., get me the max value for column X), most commonly the data
layer is involved in providing results to user queries. The files in the data layer make
up the leaves of the tree structure of an Apache Iceberg table.

In real-world usage, the data layer is backed by a distributed filesystem (e.g., Hadoop
Distributed File System [HDFS]) or something that looks like a distributed filesys-
tem, such as object storage (e.g., Amazon Simple Storage Service [Amazon S3],
Azure Data Lake Storage [ADLS], Google Cloud Storage [GCS]). This enables data
lakehouse architectures to be built on and benefit from these extremely scalable and
low-cost storage systems.

30 | Chapter2: The Architecture of Apache Iceberg

Datafiles

Datafiles store the data itself. Apache Iceberg is file format agnostic and currently
supports Apache Parquet, Apache ORC, and Apache Avro. This is important for the
following reasons:

» Many organizations store data in multiple file formats because different groups
are able to, or were able to, choose which file format they wanted to use on their
own. This is also true of companies that have grown and changed the file format
they use based on changes in scale and needs.

o It provides the flexibility to choose different formats depending on what is best
suited for a given workload. For example, Parquet might be used for large-scale
online analytical processing (OLAP) analytics, whereas Avro might be used for
low-latency streaming analytics tables.

o It future-proofs an organization’s choice of file format. If a new file format is
developed that is better suited for a set of workloads, that file format could be
used in an Apache Iceberg table.

While Apache Iceberg is file format agnostic, in the real world the file format most
commonly used is Apache Parquet. Parquet is most common because its columnar
structure provides large performance gains for OLAP workloads over row-based file
formats, and it has become the de facto standard in the industry, meaning basically
every engine and tool supports Parquet. Its columnar structure lays the foundation
for performance features such as the ability for a single file to be split multiple
ways for increased parallelism, statistics for each of these split points, and increased
compression, which provides lower storage volume and higher read throughput.

In Figure 2-2, you can see how a given Parquet file has a set of rows (“Row group
0” in the figure) that are then broken down so that all the rows’ values for a given
column are stored together (“Column a” in the figure). All the rows’ values for a
given column are further broken down into subsets of the rows’ values for this
column, which are called pages (“Page 0 in the figure). Each of these levels can be
read independently by engines and tools, and therefore each can be read in parallel
by a given engine or tool. In addition, Parquet stores statistics (e.g., minimum and
maximum values for a given column for a given row group) that enable engines and
tools to decide whether it needs to read all the data or whether it can prune row
groups that don't fit the query.

The Data Layer | 31

File

Magic number (4 bytes): “PART"

FileMetadata
Columna (ThriftCompactProtocol)

Page 0 | [- Veersion (of the format)
+Schema
+ Extra key/value pairs

ge header
(T hrlftCornpactProtocoI)

Repetition levels Row group 0 metadata:

[)

[) : 1
[Definition levels] Column a metadata:

| |

« Type/path/encodings/codec
» Num values
« Offset of first data page

Values

= Offset of firstindex page
« Compressed/uncompressed size

L/ﬂ__\/\] - Extra key/value pairs
Column “b" metadata

Row group 1metadata

Footer length (4 bytes)

Magic number (4 bytes): “PART"

Figure 2-2. The architecture of a Parquet file

Delete Files

Delete files track which records in the dataset have been deleted. Since it’s a best
practice to treat data lake storage as immutable, you can’t update rows in a file in
place. Instead, you need to write a new file. This new file can be a copy of the old
file with the changes reflected in a new copy of it (called copy-on-write [COW]), or it
can be a new file that only has the changes written, which engines reading the data
then coalesce (called merge-on-read [MOR]). Delete files enable the MOR strategy

32 | Chapter2: The Architecture of Apache Iceberg

for performing updates and deletes to Iceberg tables. That is, delete files only apply
to MOR tables (we'll go into more depth as to why in Chapter 4). Note that delete
files are only supported in the Iceberg v2 format, which at the time of this writing is
widely adopted by almost every tool supporting Iceberg but is still something to be
aware of. Figure 2-3 is a simplified diagram showing a MOR table’s datafiles before
and after a delete operation is run on it.

DELETE FROM orders
WHERE order_id = 1234

A

dbl.orders] dbl.orders
[File #1 - order ids: 0-999] [File #1 - order ids: 0-999]

[File #2 - order ids: 1000-1999] [File #2 - order ids: 1000-1999] Delete file

[File #3-order_ids:2000-2999] [File #3- order ids: 2000-2999]

\ J \

Figure 2-3. A diagram showing a MOR table before and after a DELETE is run on it

There are two ways to identify a given row that needs to be removed from the logical
dataset when an engine reads the dataset: either identify the row by its exact position in
the dataset or identify the row by the values of one or more fields of the row. Therefore,
there are two types of delete files. The former is addressed by what are called positional
delete files, and the latter is addressed by what are called equality delete files.

These two approaches have different pros and cons and therefore different situations
where one is preferred over the other. We'll go into more depth as to these considera-
tions and situations in Chapter 4 when we discuss COW versus MOR, but following
is a high-level description.

Positional delete files

Positional delete files denote what rows have been logically deleted, and therefore the
engine reading the data removes them from its representation of the table when it
uses the table, by identifying the exact position in the table where the row is located.
It does this by specifying the file path of the specific file that contains the row and the
row number within that file.

Figure 2-4 shows deleting the row with the order_1id of 1234. Assuming the data in
the file is sorted by order_id ascending, this row is in file #2 and is row #234 (note
that the row referencing is zero indexed, so row #0 in file #2 is order_id = 1000, and
therefore row #234 in file #2 is order_id = 1234).

The Data Layer | 33

DELETE FROM orders
WHERE order_id = 1234

A

dbl.orders] dbl.orders
[File #1 - order ids: 0-999] [File #1 - order ids: 0-999]

(‘File #2-order ids:10001999) | | | (" File #2-order ids: 10001999 | [RIFEEAEN

[File #3-0rder_ids:2000-2999] [File #3- order ids: 2000-2999]

\ J \

Figure 2-4. A diagram showing a MOR table configured for positional deletes before and
after a DELETE is run on it

Equality delete files

Equality delete files denote what rows have been logically deleted and therefore the
rows that the engine reading the data needs to remove from its representation of the
table when it uses the table, by identifying the row by the values of one or more
of the fields for the row. This is best done when there is a unique identifier for
each row in the table (aka primary key) so that a single field’s value can uniquely
identify a row (e.g., “delete the row where the row has a value for order_id of 1234”).
However, multiple rows can also be deleted via this method (e.g., “delete all rows
where interaction_customer_id = 5678”).

Figure 2-5 shows deleting the row with the order_1id of 1234 using an equality delete
file. An engine writes a delete file that says “delete any rows where order_id = 1234,
which any engine reading it then adheres to. Note that in contrast to positional delete
files, there is no reference to where these rows are located within the table.

Note also that there is a situation that can occur where an equality delete file deletes a
record via column values, and then in a subsequent commit, a record is added back to the
dataset that matches the delete file’s column values. In that situation, you don’t want to
have query engines remove the newly added record from the logical table when reading
it. The solution to this in Apache Iceberg is sequence numbers. For example, covering
the situation in Figure 2-5, the manifest file would note that the datafiles on the left of
Figure 2-5 all have a sequence number of 1. Then the manifest file tracking the delete
file on the right would have a sequence number of 2. Then the datafile created in the
subsequent insert of a new row with order_id of 1234 would have a sequence number of
3. So when an engine reads the table, it knows to apply the delete file to all datafiles that
have a sequence number of less than 2 (the delete file’s sequence number), but not to the
datafiles that have a sequence number of 2 or higher. Via this method, the correct state of
the table is maintained as changes are made over time.

34 | Chapter2: The Architecture of Apache Iceberg

DELETE FROM orders
WHERE order_id = 1234

dbl.orders 11 dbl.orders
[File #1 - order ids: 0-999] [File #1 - order ids: 0-999]

[File #2 - order ids: 1000-1999] [File #2 - order ids: 10001999]

[File #3-order_ids:2000-2999] [File #3- order ids: 2000-2999]

Delete:
any rows where order_id = 1234

Figure 2-5. A diagram showing a MOR table configured for equality deletes before and
after a DELETE is run on it

The Metadata Layer

The metadata layer is an integral part of an Iceberg table’s architecture and contains
all the metadata files for an Iceberg table. It’s a tree structure that tracks the datafiles
and metadata about them as well as the operations that resulted in their creation.
This tree structure is made up of three file types, all of which are colocated with
the datafiles: manifest files, manifest lists, and metadata files. The metadata layer is
essential for efficiently managing large datasets and enabling core features such as
time travel and schema evolution.

Manifest Files

Manifest files keep track of files in the data layer (i.e., datafiles and delete files) as
well as additional details and statistics about each file, such as the minimum and
maximum values for a datafile’s columns. As mentioned in Chapter 1, the primary
difference that allows Iceberg to address the problems of the Hive table format is
tracking what data is in a table at the file level. Manifest files are the files that do this
tracking at the leaf level of the metadata tree.

While manifest files track datafiles as well as delete files, a separate
set of manifest files are used for each of them (i.e., a single manifest
file will contain only datafiles or delete files), though the manifest
file schemas are identical.

The Metadata Layer | 35

Each manifest file keeps track of a subset of the datafiles. They contain information
such as details about partition membership, record counts, and lower and upper
bounds of columns that are used to improve efficiency and performance while read-
ing the data from these datafiles. While some of these statistics are also stored in the
datafiles themselves, a single manifest file stores these statistics for multiple datafiles,
meaning the pruning done from the stats in a single manifest file greatly reduces the
need to open many datafiles, which can hurt performance (even if you're just opening
the footer of many datafiles, this still can take a long time). This process will be
covered in depth in Chapter 3. These statistics are written during the write operation
by the engine/tool for each subset of datafiles a manifest file tracks.

Because these statistics are written in smaller batches by each engine for their subset
of the datafiles written, it is much more lightweight to write these statistics compared
to the Hive table format, where statistics are collected and stored as part of a long
and expensive read job requiring the engine to read an entire partition or entire table,
compute the statistics for all that data, and then write the stats for that partition/table.
This is because the writer of the data has already processed all the data it is writing,
and therefore it is more lightweight for this writer to add a step to collect statistics
for this data as it processes it for writing. In practice, this means the statistics
collection jobs when using the Hive table format are not rerun very often (if at all),
resulting in poorer query performance since engines do not have the information
necessary to make informed decisions about how to execute a given query. As a
result, Iceberg tables are much more likely to have up-to-date and accurate statistics,
allowing engines to make better decisions when processing them, resulting in higher
job performance.

You can find an example of the full contents of a manifest file (Chapter_2/manifest-
file.json) in the book’s GitHub repository. Note that in Iceberg, manifest files are in
Avro format, though for viewing convenience, we have converted the Avro contents
to JSON format.

Manifest Lists

A manifest list is a snapshot of an Iceberg table at a given point in time. For the table
at that point in time, it contains a list of all the manifest files, including the location,
the partitions it belongs to, and the upper and lower bounds for partition columns for
the datafiles it tracks.

A manifest list contains an array of structs, with each struct keeping track of a single
manifest file. The struct’s schema is detailed in Table 2-1, which has been adapted
from the public Iceberg docs. Also note that this is for Iceberg v2 tables.

36 | Chapter2: The Architecture of Apache Iceberg

https://oreil.ly/supp-guide-apache-iceberg

Table 2-1. Schema of an Iceberg manifest file

Always Field name Data type Description

present?

Yes manifest_path string Location of the manifest file

Yes manifest_length long Length of the manifest file in bytes

Yes partition_spec_1id int ID of a partition spec used to write the manifest;
refers to an entry listed in partition-specsin
the table’s metadata file

Yes content int with meaning: @: Types of files tracked by the manifest, either

data, 1: deletes datafiles or delete files

Yes sequence_number long Sequence number when the manifest was added to
the table

Yes min_sequence_number long Minimum data sequence number of all live datafiles
or delete files in the manifest

Yes added_snapshot_id long ID of the snapshot where the manifest file
was added

Yes added_files_count int Number of entries in the manifest file that have
ADDED (1) as the value for the status field

Yes existing_files_count int Number of entries in the manifest file that have
EXISTING (0) as the value for the status field

Yes deleted_files_count int Number of entries in the manifest file that have
DELETED (2) as the value for the status field

Yes added_rows_count long Sum of the number of rows in all files in the
manifest that have ADDED as the value for the
status field

Yes existing_rows_count long Sum of the number of rows in all files in the
manifest that have EXISTING as the value for the
status field

Yes deleted_rows_count long Sum of the number of rows in all files in the
manifest that have DELETED as the value for the
status field

No partitions array<field_sum List of field summaries for each partition field in the

mary> (see Table 2-2) spec; each field in the list corresponds to a field in

the manifest file’s partition spec

No key_metadata binary Implementation-specific key metadata

for encryption

The Metadata Layer | 37

As referenced in the second-to-last row in Table 2-1, field_summary is a struct with
the schema shown in Table 2-2.

Table 2-2. Schema of field_summary

Always Field name Data type Description

present?

Yes contains_null boolean Whether the manifest contains at least one partition with a null value for
the field

No contains_nan boolean Whether the manifest contains at least one partition with a NaN value for
the field

No lower_bound bytes Lower bound for the non-null, non-NaN values in the partition field, or null
if all values are null or NaN; the value is serialized to bytes

No upper_bound bytes Upper bound for the non-null, non-NaN values in the partition field, or null

if all values are null or NaN; the value is serialized to bytes

You can find an example of the full contents of a manifest list (Chapter_2/manifest-
list.json) in the book’s GitHub repository. Note that in Iceberg, manifest lists are in Avro
format, though for viewing convenience, we have converted the Avro contents to JSON
format.

Metadata Files

Manifest lists are tracked by metadata files. Another aptly named file, metadata
files store metadata about an Iceberg table at a certain point in time. This includes
information about the table’s schema, partition information, snapshots, and which
snapshot is the current one.

Each time a change is made to an Iceberg table, a new metadata file is created and is
registered as the latest version of the metadata file atomically via the catalog, which
we'll cover in the next section. This ensures that a linear history of the table commits
and helps during scenarios such as concurrent writes, that is, multiple engines writing
data simultaneously. Also, this way, engines will always see the latest version of the
table during read operations.

The metadata file’s schema is detailed in Table 2-3, which has been adapted from the
public Iceberg docs.

38 | Chapter2: The Architecture of Apache Iceberg

https://oreil.ly/supp-guide-apache-iceberg

Table 2-3. Metadata file schema

Always Field name Data type Description

present?

Yes format- integer Aninteger version number for the format. Currently, this can be 1 or 2 based

version on the spec. Implementations must throw an exception if a table’s version is
higher than the supported version. The default at the time of this writing is 2.

Yes table-uuid string AUUID that identifies the table and is generated when the table is created.
Implementations must throw an exception if a table’s UUID does not match
the expected UUID after refreshing metadata.

Yes location string Thetable’s base location. This is used by writers to determine where to store
datafiles, manifest files, and table metadata files.

Yes last- 64-bit The table’s highest assigned sequence number. This is a monotonically

sequence- signed increasing long that tracks the order of snapshots in a table.
number integer

Yes last- 64-bit Timestamp in milliseconds from the Unix epoch when the table was last

updated-ms signed updated. Each table metadata file should update this field just before writing.
integer

Yes last- integer The highest assigned column ID for the table. This is used to ensure that

column-1id columns are always assigned an unused ID when evolving schemas.
Yes schemas array Alist of schemas, stored as objects with schema-1d.
Yes current- integer ID of the table’s current schema.
schema-1id

Yes partition- array Alist of partition specs, stored as full partition spec objects.
specs

Yes default- integer ID of the “current” spec that writers should use by default.
spec-id

Yes last- integer The highest assigned partition field ID across all partition specs for the table.
partition- This is used to ensure that partition fields are always assigned an unused ID
id when evolving specs.

No properties map A string-to-string map of table properties. This is used to control settings
that affect reading and writing and is not intended to be used for arbitrary
metadata. For example, commit.retry.num-retries is used to control
the number of commit retries.

No current- 64-bit ID of the current table snapshot. This must be the same as the current ID of the

snapshot-id signed main branchin refs.
integer

No snapshots array A list of valid snapshots. Valid snapshots are snapshots for which all datafiles
exist in the filesystem. A datafile must not be deleted from the filesystem until
the last snapshot in which it was listed is garbage collected.

No snapshot- array Alist of timestamp and snapshot ID pairs that encodes changes to the

log current snapshot for the table. Each time the current-snapshot-1idis

changed, a new entry should be added with the last-updated-ms and
the new current-snapshot-id. When snapshots are expired from the
list of valid snapshots, all entries before a snapshot that has expired should
be removed.

The Metadata Layer | 39

Always Field name Datatype Description

present?

No metadata- array A list of timestamp and metadata file location pairs that encodes changes to
log the previous metadata files for the table. Each time a new metadata file is
created, a new entry of the previous metadata file location should be added
to the list. Tables can be configured to remove the oldest metadata log entries
and keep a fixed-size log of the most recent entries after a commit.

Yes sort-orders array Alist of sort orders, stored as full sort order objects.

Yes default- integer Default sort order ID of the table. Note that this could be used by writers, but it
sort-order- is not used when reading because reads use the specs stored in manifest files.
id

No refs map A map of snapshot references. The map keys are the unique snapshot

reference names in the table, and the map values are snapshot reference
objects. There is always a main branch reference pointing to the current-
snapshot-id even if the refs map is null.

No statistics array Alist (optional) of table statistics.

You can find an example of the full contents of a metadata file (Chapter_2/metadata-
file.json) in the book’s GitHub repository.

Puffin Files

While there are structures in datafiles and delete files to enhance the performance
of interacting with the data in an Iceberg table, sometimes you need more advanced
structures to enhance the performance of specific types of queries.

For example, say you wanted to know how many unique people placed an order with
you in the past 30 days. The statistics in the datafiles, not in the metadata files, as
we'll see shortly, cover this kind of use case. Certainly you could use those statistics
to improve performance by some amount (e.g., pruning out only the data for the
last 30 days), but you would still have to read every order in those 30 days and do
aggregations in the engine, which can take too long depending on factors such as the
size of the data, resources allocated to the engine, and cardinality of the fields.

Enter the puffin file format. A puffin file stores statistics and indexes about the data in
the table that improve the performance of an even broader range of queries, such as
the aforementioned example, than the statistics stored in the datafiles and metadata
files.

The file contains sets of arbitrary byte sequences called blobs, along with the associ-
ated metadata required to analyze the blobs. Figure 2-6 shows the structure of a
puffin file.

40 | Chapter 2: The Architecture of Apache Iceberg

https://oreil.ly/supp-guide-apache-iceberg

FooterPayload
T
FileMetadata

BlobMetadata

BlobMetadata

BlobMetadata

FooterPayloadSize

Figure 2-6. The structure of a puffin file

While this structure enables statistics and index structures of any type (e.g., bloom
filters), currently the only type supported is the Theta sketch from the Apache
DataSketches library. This structure enables computing the approximate number of
distinct values of a column for a given set of rows, enabling the computation to be
much faster and use much fewer resources, often orders of magnitude fewer. This
can be valuable when an operation needs to know the number of distinct values for
a column (e.g., the number of users per region), but it’s too cost or time intensive to
find the exact number. It can also be valuable when the use case allows for an approx-
imation, especially when the operation is run repeatedly, such as for dashboards.

The Metadata Layer | 41

https://oreil.ly/YLM8A

The Catalog

Anyone reading from a table (let alone tens, hundreds, or thousands of tables) needs
to know where to go first; somewhere they can go to find out where to read/write
data for a given table. The first step for anyone looking to interact with the table is to
find the location of the metadata file that is the current metadata pointer.

This central place where you go to find the current location of the current metadata
pointer is the Iceberg catalog. The primary requirement for an Iceberg catalog is that
it must support atomic operations for updating the current metadata pointer. This
support for atomic operations is required so that all readers and writers see the same
state of the table at a given point in time.

Within the catalog, there is a reference or pointer for each table to that table’s current
metadata file. For example, in Figure 2-1 there are two metadata files. The value for
the table’s current metadata pointer in the catalog is the location of the metadata file.

Because the only requirements for an Iceberg catalog are that it needs to store the
current metadata pointer and provide atomic guarantees, there are many different
backends that can serve as an Iceberg catalog. However, different catalogs store the
current metadata pointer differently. Following are a few examples:

o With Amazon S3 as the catalog, there’s a file called version-hint.text in the table’s
metadata folder whose contents is the version number of the current metadata
file. Note that anytime you use a distributed filesystem (or something that looks
like one) to store the current metadata pointer, the catalog used is actually called
the hadoop catalog.

« With Hive Metastore as the catalog, the table entry in the Hive Metastore has a

table property called location that stores the location of the current metadata
file.

» With Nessie as the catalog, the table entry in Nessie has a table property called
metadatalocation that stores the location of the current metadata file for the
table.

In the preceding examples of the manifest files, manifest lists, and metadata files, we
were using the AWS Glue Catalog. Leveraging Iceberg metadata about the table, we
can see what the catalog is saying the current metadata file is. Running the following
query gives us the details about the current state of the table, most notably the current
metadata file location:

SELECT *

FROM my_catalog.iceberg_book.orders.metadata_log_entries
ORDER BY timestamp DESC

LIMIT 1

42 | Chapter 2: The Architecture of Apache Iceberg

Timestamp Metadata File Latest Snapshot ID Latest Latest
Sequence
Schema Number
ID

2023-03-21 s3://jason-dremio- 8619686881304977663 0 2
22:55:31.868 product-us-west-2/iceberg-

book/iceberg_book.db/

orders/metadata/

00002-509f0747-4dc4-4965-

b354-

ce5fb747c2f5.metadata. json

So, if we want to read data from this table that is using the Glue Catalog,
we know that we then need to go ahead and retrieve the metadata file at the
path s3://jason-dremio-product-us-west-2/iceberg-book/iceberg_book.db/orders/metadata/
00002-509f0747-4dc4-4965-b354-ce5fb747c2f5.metadata.json.

Conclusion

In this chapter, we discussed the architecture and format of Apache Iceberg tables
that enable them to resolve the Hive table format’s problems and achieve capabilities
such as ACID transactions on the data lake. The three layers we covered—the data
layer, the metadata layer, and the catalog—and their file types and structures are
leveraged by engines and tools to read and write data efficiently, as well as achieve
more advanced capabilities such as time travel and schema evolution.

In Chapter 3, we'll discuss the lifecycle of queries run in these engines and tools to see
exactly how these file types and structures are leveraged.

Conclusion | 43

CHAPTER 3
Lifecycle of Write and Read Queries

The Apache Iceberg table format provides high-performance queries during reads
and writes, allowing you to run online analytical processing (OLAP) workloads
directly on the data lake. What facilitates this performance is the way the various
components of the Iceberg table format are designed. It is therefore critical to
understand the structure of these components so that query engines can effectively
use them for faster query planning and execution. We discussed these architectural
components in detail in Chapter 2. At a high level, all these components can be
segregated into three different layers, as presented in Figure 3-1.

-

(Catalog layer

Catalog

Current metadata pointer

Metadata
file

[Metadata layer

Manifest
list

Manifest
file

[Data layer]
Datafiles

\

Figure 3-1. Apache Iceberg’s components

45

Lets quickly review how a query engine interacts with these components for reads
and writes:

Catalog layer

As you learned in Chapter 2, a catalog holds the references to the current
metadata pointer, that is, the latest metadata file for each table. Irrespective of
whether you are doing a read operation or a write operation, the catalog is the
first component that a query engine interacts with. In the case of reads, the
engine reaches out to the catalog to learn about the current state of the table, and
for writes, the catalog is used to adhere to the schema defined and to know about
the table’s partitioning scheme.

Metadata layer

The metadata layer in Apache Iceberg consists of three components: metadata
files, manifest lists, and manifest files. Each time a query engine writes something
to an Iceberg table, a new metadata file is created atomically and is defined as the
latest version of the metadata file. This ensures that a linear history of the table
commits, and it helps during scenarios such as concurrent writes (i.e., multiple
engines writing data simultaneously). Also, during read operations, engines will
always see the latest version of the table. Query engines interact with the manifest
lists to get information about partition specifications that help them skip the
nonrequired manifest files for faster performance. Finally, information from the
manifest files, such as upper and lower bounds for a specific column, null value
counts, and partition-specific data, is used by the engine for file pruning.

Data layer
Query engines filter through the metadata files to read the datafiles required by
a particular query efficiently. On the write side, datafiles get written on the file
storage, and the related metadata files are created and updated accordingly.

In the following sections, you will learn about the lifecycle of the various write
and read operations in Apache Iceberg and how each operation interacts with the
components just described to bring about the best query performance. Note that,
throughout this chapter, we will present queries using Spark SQL and Dremio’s SQL
Query Engine as the compute engines.

Writing Queries in Apache Iceberg

The write process in Apache Iceberg involves a series of steps that enable query
engines to efficiently insert and update data. When a write query is initiated, it is sent
to the engine for parsing. The catalog is then consulted to ensure consistency and
integrity in the data and to write the data as per the defined partition strategies. The
datafiles and metadata files are then written based on the query. Finally, the catalog
file is updated to reflect the latest metadata, enabling subsequent read operations

46 | Chapter3:Lifecycle of Write and Read Queries

to access the most up-to-date version of the data. Figure 3-2 depicts a high-level
overview of the process.

Get latest
metadata file

Catalog

dbl.orders
Current metadata pointer

Write
operation

Update latest
metadata file
(atomic)

o Manifest Metadata file
list (version x)

Figure 3-2. Overview of the Apache Iceberg write process

Create the Table

We'll start by creating an Iceberg table so that you can understand the underlying
process. The example query will create a table called orders with four columns.
While the syntax to do this in Spark and Dremio’s SQL Query Engine is very similar,
it is shown separately in the rest of this chapter so that the code can be run directly
in each system and you can follow along. These code samples are also provided in
the book’s GitHub repository. This table is partitioned at the hour granularity of the
order_ts field. Note how you don’t have to add an explicit column for partitioning
with Iceberg tables. This feature is called hidden partitioning, as we discussed in
Chapter 1.

Spark SQL

CREATE TABLE orders (
order_id BIGINT,
customer_id BIGINT,
order_amount DECIMAL(10, 2),
order_ts TIMESTAMP

)

USING iceberg

PARTITIONED BY (HOUR(order_ts))

Dremio

CREATE TABLE orders (
order_id BIGINT,
customer_1id BIGINT,
order_amount DECIMAL(10, 2),

Writing Queries in Apache lceberg | 47

https://oreil.ly/supp-guide-apache-iceberg

order_ts TIMESTAMP

)
PARTITION BY (HOUR(order_ts))

Send the query to the engine

First, the query is sent to the query engine for parsing. Then, since it is a CREATE
statement, the engine will start creating and defining the table.

Write the metadata file

At this point, the engine starts creating a metadata file named v1.metadata.json in the
data lake filesystem to store information about the table. A generic form of the URL
of the path looks something like this: s3:/path/to/warehouse/db1/tablel/metadata/
vI.metadata.json.

Based on the information on the table path, /path/to/warehouse/dbl/tablel, the
engine writes the metadata file. It then defines the schema of the table orders by
specifying the columns and data types and stores it in the metadata file. Finally,
it assigns a unique identifier to the table: table-uuid. Once the query executes
successfully, the metadata file v1.metadata.json is written to the data lake file storage:

s3://datalake/dbl/orders/metadata/v1l.metadata. json

If you inspect the metadata file, you will see the schema of the defined table along
with the partition specification:

{
"table-uuid" : "072db680-d810-49ac-935c-56e901cad686",
"schema" : {

"type" : "struct",
"schema-id" : 0,
"fields" : [{
"id" ¢ 1,
"name" : "order_id",
"required" : false,
"type" : "long"
LA
"id" & 2,
"name" : "customer_id",
"required" : false,
"type" : "long"
oA
"id" : 3,
"name" : "order_amount",

"required" : false,
"type" : "decimal(1e, 2)"

LA
"id" : 4,
"name" : "order_ts",
"required" : false,

48 | Chapter3:Lifecycle of Write and Read Queries

"type" : "timestamptz"
}
1
"partition-spec" : [{
"name" : "order_ts_hour",
"transform” : "hour",
"source-id" : 4,
"field-id" : 1000
3]
}
This is the current state of the table; you have created a table, but it is an empty
table with no records. In Iceberg terms, this is called a snapshot (refer to Chapter 2
for details). An important thing to note here is that since you haven't inserted any
records yet, there is no actual data in the table, so there are no datafiles in your data
lake. Therefore, the snapshot doesn’t point to any manifest list; hence, there are no
manifest files.

Update the catalog file to commit changes

Finally, the engine updates the current metadata pointer to point to the vI.metadata.
json file in the catalog file version-hint.text, as this is the present state of the table.
Note that the name of the catalog file, version-hint.text, is specific to the catalog
choice. For this demonstration, we have leveraged the filesystem-based Hadoop cata-
log. In Chapter 5, we'll compare and contrast the different Iceberg catalog choices you
have. Figure 3-3 illustrates the hierarchy of the Iceberg components after the table
is created.

rCatang layer

dbl.orders
Current metadata pointer

\

 Metadata layer

Metadata

file

\

Data layer

\ J

Figure 3-3. Hierarchy of the Iceberg components after executing CREATE

Writing Queries in Apache Iceberg | 49

Insert the Query

Now let’s insert some records into the table and understand how things work. We
have created a table called orders with four columns. For this demonstration, we will
input the following values into the table: an order_1id of 123, a customer_1id of 456,
an order_amount of 36.17, and an order_ts of 2023-03-07 08:10:23. Here is the

query:

Spark SQL/Dremio's SQL Query Engine
INSERT INTO orders VALUES (

123,

456,

36.17,

'2023-03-07 08:10:23"'
)

Send the query to the engine

The query is sent to the query engine for parsing. Since this is an INSERT statement,
the engine needs information about the table, such as its schema, to start with query
planning.

Check the catalog

First, the query engine makes a request of the catalog to determine the location
of the current metadata file and then reads it. Because we are using the Hadoop
catalog, the engine will read the /orders/metadata/version-hint.txt file and see that
the content of the file is a single integer: 1. Because of this, and leveraging logic
from the catalog implementation, the engine knows the current metadata file location
is /orders/metadata/v1.metadata.json, which is the file our previous CREATE TABLE
operation created. So the engine will read this file. Although the engine’s motivation
in this case is to insert new datafiles, it still interacts with the catalog, primarily for
two reasons:

o The engine needs to understand the current schema of the table to adhere to it.

o The engine needs to learn about the partitioning scheme to organize data
accordingly while writing.

Write the datafiles and metadata files

After the engine learns about the table schema and the partitioning scheme, it starts
writing the new datafiles and the related metadata files. Here’s what happens in this
process.

The engine first writes the records as a Parquet datafile (Parquet is the default, but
this can be changed) based on the hourly defined partitioning scheme of the table.

50 | Chapter3:Lifecycle of Write and Read Queries

Additionally, if a sort order is defined for the table, records will be sorted before being
written into the datafile. This is what it might look like in the filesystem:

s3://datalake/dbl/orders/data/order_ts_hour=2023-03-07-08/0_0_0.parquet

After writing the datafile, the engine creates a manifest file. This manifest file is given
information about the path of the actual datafile the engine created. In addition, the
engine writes statistical information, such as the upper and lower bounds of a column
and the null value counts, in the manifest file, which is highly beneficial for the
query engine to prune files and provide the best performance. The engine computes
this information while processing the data it’s going to write, so this is a relatively
lightweight operation, at least compared to a process that starts from scratch and has
to compute the statistics. The manifest file is written as a .avro file in the storage
system:

s3://datalake/dbl/orders/metadata/62acb3d7-e992-4cbc-8e41-58809fcacb3e.avro

Here is a JSON representation of a manifest file’s content. Please note that this is
not the full content of the manifest file, but rather, an excerpt with some of the key
information pertaining to our topic:

{
"data_file" : {
"file_path" :
"s3://datalake/db1/orders/data/order_ts_hour=2023-03-07-08/0_0_0.parquet",
"file_format" : "PARQUET",
"block_size_1in_bytes" : 67108864,
"null_value_counts" : [],
"lower_bounds" : {
"array": [{

"key": 1,
"value": 123

1,

}
"upper_bounds" : {
"array": [{

"key": 1,
"value": 123

1,

1,

}
}

Next, the engine creates a manifest list to keep track of the manifest file. If existing
manifest files are associated with this snapshot, those will also be added to this new
manifest list. The engine writes this file to the data lake with information such as
the manifest file’s path, the number of datafiles/rows added or deleted, and statistics
about partitions, such as the lower and upper bounds of the partition columns.
Again, the engine already has all this information, so it’s a lightweight operation to

Writing Queries in Apache Iceberg | 51

have these statistics. This information helps read queries exclude any nonrequired
manifest files, facilitating faster queries:

s3://datalake/dbl/orders/metadata/
snap-8333017788700497002-1-4010cc03-5585-458¢c-9fdc-188de318c3e6.avro

Here is a snippet of the content of a manifest list:

{
"manifest_path":
"s3://datalake/db1l/orders/metadata/62acb3d7-e992-4cbc-8e41-58809fcacb3e.avro",
"manifest_length": 6152,
"added_snapshot_id": 8333017788700497002,
"added_data_files_count": 1,
"added_rows_count": 1,
"deleted_rows_count": 0,
"partitions": {
"array": [{
"contains_null": false,
"lower_bound": {
"bytes": "10\\u0006\\uc00O"
},
"upper_bound": {
"bytes": "10\\u6006\\uOOOO"
}
11

}

Finally, the engine creates a new metadata file, v2.metadata.json, with a new snapshot,
s1, by considering the existing metadata file, v1.metadata.json (previously current),
while keeping track of the previous snapshot, s@. This new metadata file includes
information about the manifest list created by the engine, with details such as the
manifest list filepath, snapshot ID, and summary of the operation. Also, the engine
makes a reference that this manifest list (or snapshot) is now the current one:

s3://datalake/db1/orders/metadata/v2.metadata. json

Here is what the content of this new metadata file looks like (this is an excerpt of the
metadata file):

"current-snapshot-id" : 8333017788700497002,
"refs" : {
"main" : {
"snapshot-id" : 8333017788700497002,
"type" : "branch"
}
1,
"snapshots" : [{
"snapshot-id" : 8333017788700497002,

"summary" : {
"operation" : "append",
"added-data-files" : "1",

52 | Chapter3:Lifecycle of Write and Read Queries

"added-records" : "1",

1

"manifest-1list" :

"s3://datalake/dbl/orders/metadata/

snap-8333017788700497002-1-4010cc03-5585-458c-9fdc-188de318c3e6.avro”,

L

Update the catalog file to commit changes

Now the engine goes to the catalog again to ensure that no other snapshots were
committed while this INSERT operation was being run. By doing this validation,
Iceberg guarantees no interference in operations in a scenario where multiple writers
write data concurrently. With any write operation, Iceberg creates metadata files opti-
mistically, assuming that the current version will remain unchanged until the writer
commits. Upon completing the write, the engine commits atomically by switching
the table’s metadata file pointer from the existing base version to the new version,
v2.metadata.json, which now becomes the current metadata file.

A visual representation of what the Iceberg component hierarchy looks like at this

stage is presented in Figure 3-4.

(Catalog layer

Catalog

dbl.orders
Current metadata pointer

Metadata
file

oo

Metadata
ﬁle

Manlfest

.

] v2.metadata.json

Metadata layer]

snap-8333017788700497002-
1-4010cc03-5585-458¢-9fdc-
188de318c3eb.avro

62ach3d7-e992-4chc
8e41-58809fcach3e.avro

[Data layer

\

DEIE(E] 0.0 0.parquet

Figure 3-4. Iceberg component’s hierarchy after executing INSERT

Writing Queries in Apache Iceberg

53

Merge Query

For our next write operation, we will do an UPSERT/MERGE INTO. Such queries are
usually run when you want to update an existing row if a specific value exists in the
table, and if not, you just insert the new row.

So, for our example, let’s say there is a stage table, orders_staging, that consists of
two records: one that has an update for the existing order_id (order_id=123) and
another that is an entirely new order. We want to keep the orders table updated with
the latest details for each order, and therefore we will update the order_amount if the
order_1id already exists in the destination table (orders). If not, we will just insert the
new record. Here is the query:

Spark SQL

MERGE INTO orders o

USING (SELECT * FROM orders_staging) s

ON o.order_id = s.order_1id

WHEN MATCHED THEN UPDATE SET order_amount = s.order_amount
WHEN NOT MATCHED THEN INSERT *;

Dremio

MERGE INTO orders o

USING (SELECT * FROM orders_staging) s

ON o.order_id = s.order_1id

WHEN MATCHED THEN UPDATE SET order_amount = s.order_amount

WHEN NOT MATCHED THEN INSERT (order_1id, customer_id, order_amount, order_ts)
VALUES (s.order_1id, s.customer_id, s.order_amount, s.order_ts)

This query would merge the following datasets:

orders:

order_id customer_id order_amount order_ts

123 456 36.17 2023-03-07 08:10:23

orders_staging:

order_id customer_id order_amount order_ts

123 456 50.5 2023-03-07 08:10:23

124 326 60 2023-01-27 10:05:03

Send the query to the engine

The query is first parsed by the query engine. In this case, since two tables are
involved (stage and destination), the engine needs the data for both tables to start
with the query planning.

54 | Chapter3:Lifecycle of Write and Read Queries

Check the catalog

Similar to the INSERT operation discussed in the previous section, the query engine
first makes a request to the catalog to determine the current metadata file location
and then reads it. Because the catalog used for this exercise is Hadoop, the engine will
read the /orders/metadata/version-hint.txt file and retrieve its content, which is the
integer 2. After getting this information and using the catalog logic, the engine learns
that the current metadata file location is /orders/metadata/v2.metadata.json. This is
the file that our previous INSERT operation generated, so the engine will read this file.
It will then look at the current schema of the table so that the write operations can
adhere to it. Finally, the engine will learn how datafiles are organized based on the
partitioning strategy and start writing the new datafiles.

Write datafiles and metadata files

First, the query engine will read and load data in memory from both the
orders_staging and orders tables to determine the matching records. Note that
we will go over the READ process in detail in the next section. The engine will traverse
through each record in both tables based on the order_1id field and find out the
records that match.

One important thing to note here is that as the engine is determining the matches,
what gets tracked in memory will be based on the two strategies defined by the
Iceberg table properties: copy-on-write (COW) and merge-on-read (MOR).

While we will go into more depth on these two strategies in Chapter 4, in short, with
the COW strategy, whenever the Iceberg table is updated, any associated datafiles
with the relevant records will be rewritten as a new datafile. However, with MOR, the
datafiles will not be rewritten; instead, new delete files will be generated to keep track
of the changes.

In our case, we'll use the COW strategy. So the datafile 0_0_0.parquet, which con-
tains the record with order_id = 123 from the orders table, will be read into
memory. Then the order_amount field for this order_id will be updated with the
new order_amount from the order_staging table in the in-memory copy of this data.
Finally, these modified details are then written to a new Parquet datafile:

s3://datalake/dbl/orders/data/order_ts_hour=2023-03-07-08/0_0_1.parquet

Note that we just had one record in the orders table in this specific example.
However, even if there were other records in this table that didn’t match the condition
specified in the query, the engine would still make a copy of all these records and
only the matching rows would have been updated, whereas the nonmatching ones are
written into an independent file. This is due to the write strategy, COW. You will learn
more about these writing strategies in Chapter 4.

Writing Queries in Apache Iceberg | 55

Now the record in the order_staging table that didn’t match the condition will be
treated as a regular INSERT and will be written as a new datafile in a different partition
as the hour (order_ts) value is different for this one:

s3://datalake/dbl/orders/data/order_ts_hour=2023-01-27-10/0_0_0.parquet

After writing the datafiles, the engine creates a new manifest file that holds a refer-
ence to the filepath of these two datafiles. Additionally, various statistics about these
datafiles, such as the lower and upper bounds of a column and the value counts, are
included in the manifest file:

s3://datalake/db1/orders/metadata/faf71ac0-3aee-4910-9080-c2e688148066.avro

You can see an example of what the resulting manifest file may look like in the book’s
GitHub repository.

The engine then generates a new manifest list that points to the manifest file created
in the previous step. It also tracks any existing manifest files and writes the manifest
list to the data lake:

s3://datalake/db1/orders/metadata/snap-5139476312242609518-1-e22ff753-2738-4d7d-
a810-d65dcclabe63.avro

Upon inspecting the manifest list (refer to the booKs GitHub repository), you can
also see things such as partition statistics and the number of added and deleted files.

After that, the engine goes on to create a new metadata file, v3.metadata.json, with
a new snapshot, s2, based on the previously current metadata file, v2.metadata.json,
and the snapshots included as part of that, s6 and s1 (in the book’s GitHub reposi-
tory, you can see an example of how this would look):

s3://datalake/dbi/orders/metadata/v3.metadata. json

Update the catalog file to commit changes

Finally, the engine runs a check at this point to ensure that there are no write conflicts
and then updates the catalog with the value of the latest metadata file, which is
v3.metadata.json. Visually, the Iceberg components would look like Figure 3-5 at this
stage of the UPSERT operation.

56 | Chapter3: Lifecycle of Write and Read Queries

https://oreil.ly/supp-guide-apache-iceberg
https://oreil.ly/supp-guide-apache-iceberg
https://oreil.ly/supp-guide-apache-iceberg
https://oreil.ly/supp-guide-apache-iceberg
https://oreil.ly/supp-guide-apache-iceberg

(Catalog layer

Catalog

dbl.orders
Current metadata pointer

-

/

f v Metadata Iayer1
Metadata Metadata
file file v3.metadata.json

snap-513947631224.2609518-1-
e22ff753-2738-4d7d-a810-
d65dceclabe63.avro

Manifest Manifest | faf7lac0-3aee-4910-9080
file file c2e688148066.avro

. J

>
Data layer (Partition: (Partition:

(Partition: 2023-01-27-10) 2023-03-07-08)
2023-03-07-08) § v

v
Datafile Datafile

0.0 Oparguet 0 0 0.parquet 0 0 1parquet

\ J

Datafile

Figure 3-5. Iceberg components hierarchy after executing MERGE INTO

Reading Queries in Apache Iceberg

Reading data from Apache Iceberg tables follows a well-defined sequence of actions,
seamlessly allowing queries to be transformed into actionable insights. When a read
query is initiated, it is sent to the query engine first. The engine leverages the catalog
to retrieve the latest metadata file location, which contains critical information about
the table’s schema and other metadata files, such as the manifest list that ultimately
leads to the actual datafiles. Statistical information about columns is used in this pro-
cess to limit the number of files being read, which helps improve query performance.

Reading Queries in Apache Iceberg | 57

The SELECT Query

In this section, we will cover how the various components of Apache Iceberg work
together when a READ query is executed. Here is the query that we will run:

Spark SQL/Dremio Sonar

SELECT *

FROM orders

WHERE order_ts BETWEEN '2023-01-01' AND '2023-01-31'

Send the query to the engine
At this stage, the engine will start planning the query based on the metadata files.

Check the catalog

The query engine requests the catalog for the current metadata file path for the
orders table and then reads it. As discussed in the previous two sections, the engine
will read the /orders/metadata/version-hint.txt file as we are using a Hadoop catalog
here. The content of this file is a single integer: 3. Based on this information and
the logic implemented for catalog implementation, the engine knows that the current
metadata file location is /orders/metadata/v3.metadata.json. This is the file that our
previous MERGE INTO operation generated.

Get information from the metadata file

The engine then opens and reads the metadata file, v3.metadata.json, to get informa-
tion about a couple of things. First it determines the table’s schema to prepare its
internal memory structures for reading the data. See examples of the data in the
metadata.json file in the book’s GitHub repository. Then it learns about the table’s
partitioning scheme to understand how the data is organized. The query engine can
later leverage this to skip irrelevant datafiles.

One of the most important pieces of information that the engine retrieves from the
metadata file is the current-snapshot-id. This is what signifies the current state of
the table. Based on the current-snapshot-1id, the engine will locate the manifest list
filepath from the snapshots array to traverse further and scan the relevant files.

Get information from the manifest list

After getting the location of the manifest list filepath from the metadata file, the
query engine reads the file snap-5139476312242609518-1-e22ff753-2738-4d7d-a810-
d65dcclabe63.avro to derive further details (see examples in the book’s GitHub repos-
itory). The most critical piece of information that the engine gets from this file is
the manifest file path location for each snapshot within that manifest list. The engine
needs this information to get the relevant datafiles for a specific query.

58 | Chapter3:Lifecycle of Write and Read Queries

https://oreil.ly/supp-guide-apache-iceberg
https://oreil.ly/supp-guide-apache-iceberg
https://oreil.ly/supp-guide-apache-iceberg

The manifest list also contains critical information on partitions, such as the
partition-spec-id. This tells the engine about the partition scheme used to write
a particular snapshot. Currently, the value of this field is 0 (see the book’s GitHub
repository), which implies that this is the only partition defined for the table.

There are also other partition-specific statistics, such as the lower and upper bounds
of the partition columns for a manifest. This information is beneficial when the
engine determines which manifest files to skip for better file pruning. Other details,
such as the total number of datafiles added/deleted and the number of rows added/
deleted for each snapshot, are also found in this file.

Get information from the manifest file

The engine then opens the manifest file faf71ac0-3aee-4910-9080-c2e688148066.avro
that wasn’t pruned (i.e., relevant to the query). It reads the file to get the details (view
examples in the book’s GitHub repository). First, the query engine scans every entry,
each representing a datafile tracked by this manifest file. It compares the partition
values that each of these datafiles belongs to, to the values used in our query filters.

In the query, we requested to get all the order details between '2023-01-01'
and '2023-01-31'. Therefore, the engine would ignore the partition value,
2023-03-07-08, as it doesn't match the filter value range. When the filter values
match the partition value, the engine will check for all the records in this partition.

Based on the partition value, the engine looks for the corresponding datafile,
0_0_0.parquet. The engine also gathers other statistical information, such as the lower

and upper bounds of each column and the null value counts, to skip any irrelevant
files.

Data and file optimization techniques such as partitioning and metrics-based filtering
(upper/lower bounds of columns) that are available by default in Apache Iceberg
allow the engine to avoid full table scans, as seen in this example, thereby facilitating
significant performance guarantees. Finally, the record is returned to the user:

order_id customer_id order_amount order_ts

1 125 321 20.50 2023-01-27 10:30:05 +00:00

Reading Queries in Apache Iceberg | 59

https://oreil.ly/supp-guide-apache-iceberg
https://oreil.ly/supp-guide-apache-iceberg
https://oreil.ly/supp-guide-apache-iceberg

Visually, this entire READ process looks like Figure 3-6.

, Catalog layer

Catalog

dbl.orders o
Current metadata pointer

Metadata layer |

Metadata Metadata
file file v3.metadata.json

snap-8333017788700459700.2-
1-4010cc03-5585-458¢-9fdc-
188de318c3eb.avro

Manifest Manifest | faf7lac0-3aee-4910-9080
file file c2e688148066.avro

Data layer (Partition: (Partition:
2023-01-27-10) 2023-03-07-08)

Datafile Datafile Datafile o

0.0 0.parquet 0.0 1parquet

Figure 3-6. How a READ query works in Apache Iceberg

Referring to Figure 3-6, note the following:

1. The query engine interacts with the catalog to get the current metadata file

(v3.metadata.json).

2. It then gets the current-snapshot-id (S2 in this case) and the manifest list

location for that snapshot.

3. The manifest file path is then retrieved from the manifest list.

4. The engine determines the datafile path based on the partition filter (2023-03-

07-08) from the manifest file.

5. The matching data from the required datafile is then returned to the user.

60 | Chapter3:Lifecycle of Write and Read Queries

The Time-Travel Query

An important capability in the world of databases and data warehouses is the ability
to go back in time to a particular state of the table to query historical data (i.e.,
data that has been changed or deleted). Apache Iceberg brings a similar time-travel
capability to a data lakehouse architecture. This can be particularly useful for sce-
narios such as analyzing your organization’s data from previous quarters, restoring
accidentally deleted rows, or reproducing analysis results. Apache Iceberg provides
two ways to run time-travel queries: using a timestamp and using a snapshot ID.

In this section, you will learn how to run time-travel queries for an Apache Iceberg
table. For the purpose of this demonstration, let’s say we needed to travel back to the
state before we executed the MERGE INTO query (i.e., when we just ran our INSERT
statement). So, given those assumptions, the first thing we need to understand is the
history of the Iceberg table. One of the best things about Apache Iceberg is that it
allows you to analyze various table-specific metadata information via system tables
called metadata tables. You will learn about metadata tables in detail in Chapter 10. To
analyze our order table’s history, we will query the history metadata table (available
in the booK’s GitHub repository are examples of metadata throughout this section):

Spark SQL

SELECT * FROM catalog.db.orders.history;

Dremio

SELECT * FROM TABLE (table_history('orders'))

This gives us a list of all the transactions that have occurred in this table:

made_current_at snapshot_1id parent_id is_current_ancestor
2023-03-06 7327164675870333694 null true

21:28:35.360

2023-03-07 8333017788700497002 7327164675870333694 true

20:45:08.914

2023-03-09 5139476312242609518 8333017788700497002 true

19:58:40.448

Reading Queries in Apache Iceberg | 61

https://oreil.ly/supp-guide-apache-iceberg

To summarize the history metadata table:

o The first snapshot, with ID 7327164675870333694, was generated after we ran
the CREATE statement.

o The second snapshot, 8333017788700497002, was created after we inserted a new
record using the INSERT statement.

o Finally, our MERGE INTO query created the third snapshot, 5139476312242609518.

Since our requirement is to time-travel to the state prior to the final transaction (i.e.,
MERGE), the timestamp or the snapshot ID we will be targeting is the second one. This
is the query that we will run:

Spark SQL

SELECT * FROM orders

TIMESTAMP AS OF '2023-03-07 20:45:08.914'
Dremio Sonar

SELECT * FROM orders

AT TIMESTAMP '2023-03-07 20:45:08.914"'

If we don’t provide the exact timestamp value, Iceberg will look for
snapshots older than the specified value and return the results. If
no older snapshots exist, Iceberg will throw an exception such as
this:

IllegalArgumentException: Cannot find a snapshot older
than 2023-03-06T21:28:35+00:00.

If we want to use the snapshot ID to time-travel, the query would look like this:

Spark SQL

SELECT *

FROM orders

VERSION AS OF 8333017788700497002
Dremio

SELECT *

FROM orders

AT SNAPSHOT 8333017788700497002

Now let’s quickly cover what happens behind the scenes with the Iceberg components
when the time-travel query is run and how the relevant datafile is returned to the
user.

Send the query to the engine

As with any SELECT statement, the query is first sent to the engine, which parses it.
The engine will leverage the table metadata to start planning the query.

62 | Chapter3:Lifecycle of Write and Read Queries

Check the catalog

In this step, the query engine requests the catalog to know the location of the
current metadata file and reads it. Since we have leveraged the Hadoop catalog in
this exercise, the engine will read the content of the /orders/metadata/version-hint.txt
file, which is the integer 3. With this information, and following the catalog’s imple-
mentation logic, the engine determines that the location of the current metadata
file is /orders/metadata/v3.metadata.json. The engine will finally read this file to
understand the table schema and things such as partitioning strategy.

Get information from the metadata file

Next, the engine reads the metadata file to get the table information. The current
metadata file keeps track of all the snapshots generated for our Iceberg table, unless
they were intentionally expired as part of the metadata maintenance strategies (more
about this in Chapter 4). From the available list of snapshots, the engine will deter-
mine the particular snapshot specified in the time-travel query based on either the
timestamp value or the snapshot ID.

The engine also learns about the table’s schema and the partitioning scheme to use
later for file pruning. Finally, it gets the location of the corresponding manifest list
path for that particular snapshot:

s3://datalake/dbl/orders/metadata/
snap-8333017788700497002-1-4010cc03-5585-458c-9fdc-188de318c3e6.avro

Get information from the manifest list

Based on the manifest list path, the engine opens and reads the specified .avro file
containing data about our snapshot. The engine derives a couple of important pieces
of information from the manifest list:

+ The manifest file path location, which holds references to the actual datafiles:
s3://datalake/db1/orders/metadata/62acb3d7-e992-4cbc-8e41-58809fcacb3e.avro

o Information such as the number of datafiles added/deleted and statistical
information about partitions

Get information from the manifest file

Finally, the engine reads any manifest files that match our query and gets details. The
most important information in the manifest file is the datafile path, which contains
the path to the file with the records for a query. The engine would go through each
datafile in the manifest to determine whether it should be read or not. Besides the
datafile path location, the engine also gathers statistical information on the columns
discussed in the previous sections.

Reading Queries in Apache Iceberg | 63

In the end, the engine reads the datafile 0_0_0.parquet, and the following output is
returned to the user:

order id customer_id order_amount order_ts

123 456 36.17 2023-03-07 08:10:23 +00:00

This is the record we inserted into the table before running the MERGE INTO query.
Figure 3-7 provides a visual summary of the process.

, Catalog layer

Catalog
dbl.orders
Current metadata pointer
Metadata
file

snap-8333017788700497002-
1-4010cc03-5585-458¢-9fdc-

Metadata layer

Metadata
file

v3.metadata.json

188de318c3eb.avro
62ach3d7-e992-4che Manifest Manifest
8e41-58809fcach3e.avro file file
Data layer o v L 2
(Partition: Datafile Datafile Datafile
2023-03-07-08)

0.0.0.parquet

Figure 3-7. How the time-travel query works in Iceberg

64 | Chapter3:Lifecycle of Write and Read Queries

Referring to Figure 3-7, note the following:

1. The query engine interacts with the catalog to get the current metadata file
(v3.metadata.json).

2. It then selects the snapshot (S1 in this case) based on either the timestamp or the
version ID supplied in the time-travel query and gets the manifest list location
for that snapshot.

3. The manifest file path is then retrieved from the manifest list.

4. The engine determines the datafile path based on the partition filter (2023-03-
07-08) from the manifest file.

5. The matching data from the required datafile is then returned to the user.

Conclusion

In this chapter, we discussed the internal workings of various read and write queries,
such as creating tables and inserting and updating records, to understand how differ-
ent architectural components of Apache Iceberg are leveraged by compute engines.

In Chapter 4, we will cover the out-of-the-box optimization techniques available in
Apache Iceberg to ensure high performance when reading and writing data to tables.

Conclusion | 65

CHAPTER 4

Optimizing the Performance
of Iceberg Tables

As you saw in Chapter 3, Apache Iceberg tables provide a layer of metadata that
allows the query engine to create smarter query plans for better performance. How-
ever, this metadata is only the beginning of how you can optimize the performance of
your data.

You have various optimization levers at your disposal, including reducing the number
of datafiles, data sorting, table partitioning, row-level update handling, metrics col-
lection, and external factors. These levers play a vital role in enhancing data perfor-
mance, and this chapter explores each of them, addressing potential slowdowns and
providing acceleration insights. Implementing robust monitoring with preferred tools
is crucial for identifying optimization needs, including the use of Apache Iceberg
metadata tables, which we will cover in Chapter 10.

Compaction

Every procedure or process comes at a cost in terms of time, meaning longer queries
and higher compute costs. Stated differently, the more steps you need to take to do
something, the longer it will take for you to do it. When you are querying your
Apache Iceberg tables, you need to open and scan each file and then close the file
when youre done. The more files you have to scan for a query, the greater the cost
these file operations will put on your query. This problem is magnified in the world
of streaming or “real-time” data, where data is ingested as it is created, generating lots
of files with only a few records in each.

67

In contrast, batch ingestion, where you may ingest a whole day’s worth or a week’s
worth of records in one job, allows you to more efficiently plan how to write the
data as better-organized files. Even with batch ingestion, it is possible to run into
the “small files problem,” where too many small files have an impact on the speed
and performance of your scans because youre doing more file operations, have a lot
more metadata to read (there is metadata on each file), and have to delete more files
when doing cleanup and maintenance operations. Figure 4-1 depicts both of these
scenarios.

Many smaller files 1(Fewer bigger files

File1 File1

e e

10 records Open, read, close Tx ol Open, read, close Tx
—

File2
10 records
File3
10 records
File 4
10 records
File5
10 records

\ J N J

Open, read, close 2x

Open, read, close 3x

Open, read, close 4x

Open, read, close 5x

Figure 4-1. Many smaller files are slower to read than the same data in fewer larger files

Essentially, when it comes to reading data, there are fixed costs you can't avoid and
variable costs you can avoid using different strategies. Fixed costs include reading
the particular data relevant to your query; you can’t avoid having to read the data to
process it. Although variable costs would include file operations to access the data,
using many of the strategies we will discuss throughout this chapter you can reduce
those variable costs as much as possible. After using these strategies, you'll be using
only the necessary compute to get your job done more cheaply and more quickly
(getting the job done more quickly has the benefit of being able to terminate compute
clusters earlier, reducing their costs).

The solution to this problem is to periodically take the data in all these small files
and rewrite it into fewer larger files (you may also want to rewrite manifests if there
are too many manifests relative to the number of datafiles you have). This process
is called compaction, as you are compacting many files into a few. Compaction is
illustrated in Figure 4-2.

68 | Chapter4: Optimizing the Performance of Iceberg Tables

—
File1
10 records
— 4
File2
10 records
—

File3 File1 |
10 records Open, read, close 3x 50 records Open, read, close Tx
| —

—
File 4
10 records
———4
File5
10 records
—

Open, read, close Tx

S
\50\\?

Open, read, close 2x

Open, read, close 4x

Open, read, close 5x

Figure 4-2. Compaction takes many smaller files and processes them into fewer
bigger files

Hands-on with Compaction

You may be thinking that while the solution sounds simple, it will involve you having
to write some extensive code in Java or Python. Fortunately, Apache Iceberg’s Actions
package includes several maintenance procedures (the Actions package is specifically
for Apache Spark, but other engines can create their own maintenance operation
implementation). This package is used from within Spark either by writing SparkSQL
as shown through most of this chapter or by writing imperative code such as the
following (keep in mind that these actions still maintain the same ACID guarantees
as normal Iceberg transactions):

Table table = catalog.loadTable("myTable");
SparkActions
.get()
.rewriteDataFiles(table)
.option("rewrite-job-order", "files-desc")
.execute();
In this snippet, we initiated a new instance of our table and then triggered rewrite
DataFiles, which is the Spark action for compaction. The builder pattern used by
SparkActions allows us to chain methods together to fine-tune the compaction job
to express not only that we want compaction to be done, but also how we want it to
be done.

There are several methods you can chain between the call to rewriteDataFiles and
the execute method that begins the job:

binPack
Sets the compaction strategy to binpack (discussed later), which is the default and
doesn’t need to be explicitly supplied

Hands-on with Compaction | 69

Sort
Changes the compaction strategy to sort the data rewritten by one or more fields
in a priority order, further discussed in “Compaction Strategies” on page 74

zOrder
Changes the compaction strategy to z-order-sort the data based on multiple
fields with equal weighting, further discussed in “Sorting” on page 76

filter
Enables you to pass an expression used to limit which files are rewritten

option
Changes a single option

options
Takes a map of several option configurations

There are several possible options you can pass to configure the job; here are a few
important ones:

target-file-size-bytes
This will set the intended size of the output files. By default, this will use the
write.target.file-size-bytes property of the table, which defaults to 512 MB.

max-concurrent-file-group-rewrites
This is the ceiling for the number of file groups to write simultaneously.

max-file-group-size-bytes
The maximum size of a file group is not one single file. This setting should
be used when dealing with partitions larger than the memory available to the
worker writing a particular file group so that it can split that partition into
multiple file groups to be written concurrently.

partial-progress-enabled
This allows commits to occur while file groups are compacted. Therefore, for
long-running compaction, this can allow concurrent queries to benefit from
already compacted files.

partial-progress-max-commits
If partial progress is enabled, this setting sets the maximum number of commits
allowed to complete the job.

rewrite-job-order
The order to write file groups, which can matter when using partial progress to
make sure the higher-priority file groups are committed sooner rather than later,
can be based on the groups ordered by byte size or number of files in a group
(bytes-asc, bytes-desc, files-asc, files-desc, none).

70 | Chapter4: Optimizing the Performance of Iceberg Tables

File Size and Row Group Size

For Apache Parquet files, there is row group size and a file size. The row group size
is the size of one group of rows in a Parquet file, and each file can have multiple
groups. Therefore, an Iceberg table’s default configuration would allow for a 128 MB
row group size and a 512 MB file size (four row groups per file). You'll always
want to make sure these two settings are aligned (i.e., that the row size is evenly
divided by the file size). Fewer row groups results in a smaller file size, as there are
fewer groups to have group metadata written for, while more row groups improves
predicate pushdown because the row group metadata can have more fine-grained
ranges, making it possible for the query engine to eliminate reading more row groups
that don’t contain data relevant to the current query.

Another example is that you may want to increase the file size to 1 GB per file but
keep row groups to 128 MB (eight row groups per file); that way, there are fewer files
to open and close. Although the types of queries youre running often require reading
most of the data, youd prefer fewer row groups since predicate pushdown will not
speed up the process of getting all the data.

Row group size and file size can both be set as table properties (write.parquet.row-
group-size-bytes and write.target-file-size-bytes, respectively), but the file
size can be set for individual compaction jobs using the options settings.

As the engine plans the new files to be written in the compaction
job, it will begin grouping these files into file groups that will
be written in parallel (meaning one file from each group can be
written concurrently). In your compaction jobs, you can configure
options on how big these file groups can be and how many should
be written simultaneously to help prevent memory issues.

Partial Progress

Partial progress allows new snapshots to be created as file groups are completed. This
allows queries to benefit from the already compacted files as others are completed.
It also helps prevent out-of-memory (OOM) situations for large compaction jobs
because progress is saved as it completes the job, and less data needs to be retained in
memory.

Keep in mind that more snapshots means more metadata files taking up storage in
your table location. But if you want your readers to benefit from a compaction job
sooner rather than later, this can be a useful feature. If you want to balance out the
cost of additional snapshots with the benefits of partial progress, you can adjust the
max-commits to limit the number of total commits a single compaction job will make.

Hands-on with Compaction |

n

The following code snippet uses several of the possible table options in practice:

Table table = catalog.loadTable("myTable");

SparkActions
.get()
.rewriteDataFiles(table)
.sort()
.filter(Expressions.and(
Expressions.greaterThanOrEqual("date", "2023-01-01"),
Expressions.lessThanOrEqual("date", "2023-01-31")))
.option("rewrite-job-order", "files-desc")
.execute();

In the preceding example, we implemented a sort strategy that, by default, adheres
to the sort order specified in the table’s properties. Additionally, we incorporated a
filter to exclusively rewrite data from the month of January. It's important to note
that this filter requires creation of an expression using Apache Icebergs internal
expression-building interface. Furthermore, we configured the rewrite-job-order
to prioritize the rewriting of larger groups of files first. This means a file that is being
rewritten from a group of five files will be processed before one that consolidates
from just two files.

The Expressions library is designed to facilitate creating expres-
sions around Apache Iceberg’s metadata structures. The library
provides APIs to build and manipulate these expressions, which
can then be used to filter data in tables and read operations. Ice-
berg’s expressions can also be used in manifest files to summarize
the data in each datafile, which allows Iceberg to skip files that
do not contain rows that could match a filter. This mechanism is
essential for Iceberg’s scalable metadata architecture.

While this is all well and good, it can be done more easily using the Spark SQL
extensions, which include call procedures that can be called using the following
syntax from Spark SQL:

-- using positional arguments
CALL catalog.system.procedure(argl, arg2, arg3)

-- using named arguments
CALL catalog.system.procedure(argkeyl => argvall, argkey2 => argval2)

Using the rewriteDataFiles procedure in this syntax would look like Example 4-1.

Example 4-1. Using the rewrite_data_files procedure to run compaction jobs

-- Rewrite Data Files CALL Procedure in SparkSQL
CALL catalog.system.rewrite_data_files(
table => 'musicians',

72 | Chapter4: Optimizing the Performance of Iceberg Tables

strategy => 'binpack',

where => 'genre = "rock"',

options => map(
'rewrite-job-order', 'bytes-asc',
'target-file-size-bytes','1073741824', -- 1GB
'max-file-group-size-bytes','10737418240"' -- 10GB

)

)

In this scenario, we may have been streaming some data into our musicians table and
noticed that a lot of small files were generated for rock bands, so instead of running
compaction on the whole table, which can be time-consuming, we targeted just the
data that was problematic. We also tell Spark to prioritize file groups that are larger
in bytes and to keep files that are around 1 GB each with each file group of around
10 GB. You can see what the result of these settings would be in Figure 4-3.

Notice in Example 4-1 the use of double quotation marks in our
where filter. Because we had to use single quotes around the filter,
we use double quotes in the string, even if SQL would normally use
single quotes for "rock". The where option is essentially equivalent
to the filter method mentioned earlier. Without it, the whole table
would possibly be rewritten.

File group #110 GB
(File | [File) [File)
| 16B | 16B) [1GB |

[File | [File | [File |[File | f=—>Asynchronous Spark task1
168 J{ 168 || 16B || 1GB

[File |[File][File)
168 || 168 || 1B |

File group #210 GB
[File |(File][File |
| 1GB J| 1GB || 1GB |

(File | File | [File | [File | 3 Asynchronous Spark task 2
168 | 168 || 1GB J(1GB

File |(File | [File |
| 16B J(168 || 16B |

\ J

Figure 4-3. The result of having the max file group and max file size set to 10 GB and
1 GB, respectively

Hands-on with Compaction | 73

Other engines can implement their own custom compaction tools. For example,
Dremio has its own Iceberg table management feature via its OPTIMIZE command,
which is a unique implementation but follows many of the APIs from the Rewrite
DataFiles action:

OPTIMIZE TABLE catalog.MyTable

The preceding command would achieve your basic binpack compaction by com-
pacting all the files into fewer, more optimal files. But like the rewriteDataFiles
procedure in Spark, we can get more granular.

For example, here we are compacting only a particular partition:

OPTIMIZE TABLE catalog.MyTable
FOR PARTITIONS sales_year IN (2022, 2023) AND sales_month IN ('JAN', 'FEB',
"MAR')

And here we are compacting with particular file size parameters:

OPTIMIZE TABLE catalog.MyTable
REWRITE DATA (MIN_FILE_SIZE_MB=100, MAX_FILE_SIZE_MB=1000,
TARGET_FILE_SIZE_MB=512)

In this code snippet, we are rewriting only the manifests:

OPTIMIZE TABLE catalog.MyTable
REWRITE MANIFESTS

As you can see, you can use Spark or Dremio to achieve compaction of your Apache
Iceberg tables.

Compaction Strategies

As mentioned earlier, there are several compaction strategies that you can use
when using the rewriteDataFiles procedure. Table 4-1 summarizes these strategies,
including their pros and cons. In this section, we will discuss binpack compaction;
standard sorting and z-order sorting will be covered later in the book.

Table 4-1. Pros and cons of compaction strategies

Strategy What it does Pros Cons

Binpack Combines files only; no global sorting (will do local ~ This offers the fastest Data is not clustered.
sorting within tasks) compaction jobs.

Sort Sorts by one or more fields sequentially prior to Data clustered by often queried This results in longer
allocating tasks (e.g., sort by field a, then within fields can lead to much faster ~ compaction jobs
that, sort by field b) read times. compared to binpack.

z-order Sorts by multiple fields that are equally weighted, If queries often rely on filters on This results in longer-
prior to allocating tasks (X and Y values in this range multiple fields, this can improve running compaction
are in one grouping; those in another range arein read times even further. jobs compared to
another grouping) binpack.

74 | Chapter4: Optimizing the Performance of Iceberg Tables

The binpack strategy is essentially pure compaction with no other considerations for
how the data is organized beyond the size of the files. Of the three strategies, binpack
is the fastest as it can just write the contents of the smaller files to a larger file of your
target size, whereas sort and z-order must sort the data before they can allocate file
groups for writing. This is particularly useful when you have streaming data and need
compaction to run at a speed that meets your service level agreements (SLAs).

If an Apache Iceberg table has a sort order set within its settings,
even if you use binpack, this sort order will be used for sorting
data within a single task (local sort). Using the sort and z-order
strategies will sort the data before the query engine allocates the
records into different tasks, optimizing the clustering of data across
tasks.

If you were ingesting streaming data, you may need to run a quick compaction on
data that is ingested after every hour. You could do something like this:

CALL catalog.system.rewrite_data_files(
table => 'streamingtable',
strategy => 'binpack',
where => 'created_at between "2023-01-26 09:00:00" and "2023-01-26 09:59:59" ',
options => map(
'rewrite-job-order', 'bytes-asc',
'target-file-size-bytes','1073741824",
'max-file-group-size-bytes', '10737418240",
'partial-progress-enabled', 'true'
)
)
In this compaction job, the binpack strategy is employed for faster alignment with
streaming SLA requirements. It specifically targets data ingestion within a one-hour time
frame, which can dynamically adjust to the most recent hour. The use of partial progress
commits ensures that as file groups are written, they are immediately committed, leading
to immediate performance enhancements for readers. Importantly, this compaction
process focuses solely on previously written data, isolating it from any concurrent writes

coming from streaming operations that would introduce new datafiles.

Using a faster strategy on a limited scope of data can make your compaction jobs
much faster. Of course, you could probably compact the data even more if you
allowed compaction beyond one hour, but you have to balance out the need to
run the compaction job quickly with the need for optimization. You may have an
additional compaction job for a day’s worth of data overnight and a compaction
job for a week’s worth of data over the weekend to keep optimizing in continuous
intervals while interfering as little as possible with other operations. Keep in mind
that compaction always honors the current partition spec, so if data from an old
partition spec is rewritten, it will have the new partitioning rules applied.

Hands-on with Compaction | 75

Automating Compaction

It would be a little tricky to meet all your SLAs if you have to manually run these
compaction jobs, so looking into how to automate these processes could be a real
benefit. Here are a couple of approaches you can take to automate these jobs:

» You can use an orchestration tool such as Airflow, Dagster, Prefect, Argo, or Luigi
to send the proper SQL to an engine such as Spark or Dremio after an ingestion
job completes or at a certain time or periodic interval.

+ You can use serverless functions to trigger the job after data lands in cloud object
storage.

 You can set up cron jobs to run the appropriate jobs at specific times.

These approaches require you to script out and deploy these services manually. How-
ever, there is also a class of managed Apache Iceberg catalog services that features
automated table maintenance and includes compaction. Examples of these kinds of
services include Dremio Arctic and Tabular.

Sorting

Before we get into the details of the sort compaction strategy, let’s understand sorting
as it relates to optimizing a table.

Sorting or “clustering” your data has a very particular benefit when it comes to your
queries: it helps limit the number of files that need to be scanned to get the data
needed for a query. Sorting the data allows data with similar values to be concentrated
into fewer files, allowing for more efficient query planning.

For example, suppose you have a dataset representing every player on every NFL
team across 100 Parquet files that aren’t sorted in any particular way. If you did a
query just for players on the Detroit Lions, even if a file of 100 records has only one
record of a Detroit Lions player, that file must be added to the query plan and be
scanned. This means you may need to scan up to 53 files (the maximum number of
players that can be on an NFL team). If you sorted the data alphabetically by team
name, all the Detroit Lions players should be in about four files (100 files divided by
32 NFL teams equals 3.125), which would probably include a handful of players from
the Green Bay Packers and the Denver Broncos. So, by having the data sorted, you've
reduced the number of files you have to scan from possibly 53 to 4, which, as we
discussed in “Compaction Strategies” on page 74, greatly improves the performance
of the query. Figure 4-4 depicts the benefits of scanning sorted datasets.

76 | Chapter4: Optimizing the Performance of Iceberg Tables

Unsorted query plan 1(Sorted query plan
Datafiles to be scanned Datafiles to be scanned

']liiil 00O
0000000200

000
0000000000
OOO000O0O0A

OO000O00000
0000000000

00
0000000000 || O000000O00
0000000000 || 6000000000 |

Figure 4-4. Sorted datasets results in scanning fewer datafiles

Sorted data can be quite useful if how the data is sorted leans into typical query
patterns such as in this example, where you may regularly query the NFL data based
on a particular team. Sorting data in Apache Iceberg can happen at many different
points, so you want to make sure you leverage all these points.

There are two main ways to create a table. One way is with a standard CREATE TABLE
statement:

-- Spark Syntax
CREATE TABLE catalog.nfl_players (
id bigint ,
player_name varchar,
team varchar,
num_of_touchdowns int,
num_of_yards int,
player_position varchar,
player_number int,

-- Dremio Syntax
CREATE TABLE catalog.nfl_players (
id bigint ,
player_name varchar,
team varchar,
num_of_touchdowns int,
num_of_yards int,
player_position varchar,
player_number 1int,

Sorting | 77

The other way is with a CREATE TABLE..AS SELECT (CTAS) statement:

-- Spark SQL & Dremio Syntax
CREATE TABLE catalog.nfl_players
AS (SELECT * FROM non_iceberg_teams_table);

After creating the table, you set the sort order of the table, which any engine that
supports the property will use to sort the data before writing and will also be the
default sort field when using the sort compaction strategy:

ALTER TABLE catalog.nfl_teams WRITE ORDERED BY team;
If doing a CTAS, sort the data in your AS query:

CREATE TABLE catalog.nfl_teams
AS (SELECT * FROM non_1iceberg_teams_table ORDER BY team);

ALTER TABLE catalog.nfl_teams WRITE ORDERED BY team;

The ALTER TABLE statement sets a global sort order that will be used for all future
writes by engines that honor the sort order. You could also specify it with INSERT
INTO, like so:

INSERT INTO catalog.nfl_teams
SELECT *
FROM staging_table
ORDER BY team

This will ensure that the data is sorted as you write it, but it isn’t perfect. Going back
to the previous example, if the NFL dataset was updated each year for changes in the
teams’ rosters, you may end up having many files splitting Lions and Packers players
from multiple writes. This is because youd now need to write a new file with the new
Lions players for the current year. This is where the sort compaction strategy comes
into play.

The sort compaction strategy will sort the data across all the files targeted by the job.
So, for example, if you wanted to rewrite the entire dataset with all players sorted by
team globally, you could run the following statement:

CALL catalog.system.rewrite_data_files(
table => 'nfl_teams',

strategy => 'sort',
sort_order => 'team ASC NULLS LAST'

)

Here is a breakdown of the string that was passed for the sort order:

team
Will sort the data by the team field

ASC
Will sort the data in ascending order (DESC would sort in descending order)

78 | Chapter4: Optimizing the Performance of Iceberg Tables

NULLS LAST
Will put all players with a null value at the end of the sort, after the Washington
Commanders (NULLS FIRST would put all players before the Arizona Cardinals)

Figure 4-5 shows the result of the sort.

Com,
— pac
Lions and L9 5116y
Packers

filel
P Lions file
Lions and

Packers »
file 2 Lions and
—————y Packers
Lions and file

Packers /
file3 —ed andsorte

Col

Figure 4-5. Compacting and sorting the data into fewer files

You can sort by additional fields as well. For example, you may want the data sorted
by team, but then within each team you may want it sorted alphabetically by name.
You can achieve this by running a job with these parameters:

CALL catalog.system.rewrite_data_files(

table => 'nfl_teams',

strategy => 'sort',

sort_order => 'team ASC NULLS LAST, name ASC NULLS FIRST'
)

Sorting by team will have the highest weight, followed by sorting by name. You'll
probably see players in this order in the file where the Lions roster ends and the
Packers roster begins, as shown in Figure 4-6.

File 2 (Lions/Packers) File 3 (Packers)

Starling Thomas V Trinity Benson Anthony Johnson Jr.
Steven Gilmore Will Harris Antonio Moultrie
Taylor Decker Zach Mortonn Austin Allen
Tom Kennedy Aaron Jones B.R. Hatcher
Tracy Walker 1l AJDillon Benny Sapp Il
Tevor Nowaske Anders Carlson Bo Melton

Figure 4-6. Sorted list of players across files

If end users regularly asked questions such as “Who are all the Lions players whose
name starts with A, this dual sort would accelerate the query even further. However,
if end users asked “Who are all the NFL players whose name starts with A, this

Sorting | 79

wouldn’t be as helpful, as all the “A” players are stretched across more files than if you
had just sorted by name alone. This is where z-ordering can be useful.

The bottom line is that to get the best advantage of sorting, you need to understand
the types of questions your end users are asking so that you can have the data sorted
to lean into their questions effectively.

Z-order

There are times when multiple fields are a priority when querying a table, and this
is where a z-order sort may be quite helpful. With a z-order sort you are sorting the
data by multiple data points, which allows engines a greater ability to reduce the files
scanned in the final query plan. Let’s imagine were trying to locate item Z in a 4 x 4
grid (Figure 4-7).

- N ™

A y > B y >
: 2 3 4 : 2 3 4
—0—0 0 —0—0 0

Z x1-2 X 3-4
2@ 20) Zy12
x|3@ X|3@
%3 x3-4
4@ 4@ i 34
v v

y
>
3 4
@ @ \
X3 X3
y3 y4
X
1@ 7
X4 X4
y3 y4
v ’

\ J

Figure 4-7. Understanding the basics of z-ordering

80 | Chapter4: Optimizing the Performance of Iceberg Tables

Referring to “A” in Figure 4-7, we have a value (z), which we can say equals 3.5, and
we want to narrow the area we want to search within our data. We can narrow down
our search by breaking the field into four quadrants based on ranges of X and Y
values, as shown in “B” in the figure.

So if we know what data we are looking for based on fields we z-ordered by, we
can possibly avoid searching large portions of the data since it’s sorted by both
fields. We can then take that quadrant and break it down even further and apply
another z-order sort to the data in the quadrant, as shown in “C” in the figure. Since
our search is based on multiple factors (X and Y), we could eliminate 75% of the
searchable area by taking this approach.

You can sort and cluster your data in the datafiles in a similar way. For example, let’s
say you have a dataset of all people involved in a medical cohort study, and you are
trying to organize outcomes in the cohort by age and height; z-ordering the data may
be quite worthwhile. You can see this in action in Figure 4-8.

Age

>
——@—0—0

) Age1-50 Age 51-100
Height 1-5ft | Height 1-5 ft

Height | @

Z

Age1-50 | Age51-100
o Height 5-10 ft | Height 5-10 ft

Ve
Figure 4-8. Z-ordering based on age and height

Data that falls into a particular quadrant will be in the same datafiles, which can really
slim down files to scan as you try to run analytics on different age/height groups. If you
are searching for people with a height of 6 feet and an age of 60, you could immediately
eliminate the datafiles that have data that belongs in the other three quadrants.

This works because the datafiles will fall into four categories:

o A: File with records containing Age 1-50 and Height 1-5

« B: File with records containing Age 51-100 and Height 1-5

« C: File with records containing Age 1-50 and Height 5-10

o D: File with records containing Age 51-100 and Height 5-10

Z-order | 81

If the engine knows you are searching for someone who is 60 years of age and is 6
feet tall, as it uses the Apache Iceberg metadata to plan the query, all the datafiles in
categories A, B, and C will be eliminated and will never be scanned. Keep in mind
that even if you only searched by age, youd see a benefit from clustering by being able
to eliminate at least two of the four quadrants.

Achieving this would involve running a compaction job:

CALL catalog.system.rewrite_data_files(
table => 'people',
strategy => 'sort',
sort_order => 'zorder(age,height)'
)
Using the sort and z-order compaction strategies not only allows you to reduce the
number of files your data exists in, but also makes sure the order of the data in those
files enables even more efficient query planning.

While sorting is effective, it comes with some challenges. First, as new data is
ingested, it becomes unsorted, and until the next compaction job, the data remains
somewhat scattered across multiple files. This occurs because new data is added to
a new file and is potentially sorted within that file but not in the context of all
previous records. Second, files may still contain data for multiple values of the sorted
field, which can be inefficient for queries that only require data with a specific value.
For instance, in the earlier example, files contained data for both Lions and Packers
players, making it inefficient to scan Packers records when you were only interested
in Lions players.

To deal with this, we have partitioning.

Partitioning

If you know a particular field is pivotal to how the data is accessed, you may want
to go beyond sorting and into partitioning. When a table is partitioned, instead of
just sorting the order based on a field, it will write records with distinct values of the
target field into their own datafiles.

For example, in politics, you'll likely often query voter data based on a voter’s party
affiliation, making this a good partition field. This would mean all voters in the
“Blue” party will be listed in distinct files from those in the “Red,” “Yellow;” and
“Green” parties. If you were to query for voters in the “Yellow” party, none of the
datafiles you scan would include anyone from any other parties. You can see this
illustrated in Figure 4-9.

82 | Chapter4: Optimizing the Performance of Iceberg Tables

“Blue” party “Red"” party “Green"” party [“Yellow" party
partition partition partition partition
Datafile § Datafile Datafile § Datafile Dataﬁle] Datafile Datafile| [Datafile
Datafile § Datafile Datafile § Datafile Dataﬁle] Datafile Datafile| [Datafile
Datafile | Datafile Datafile | Datafile Dataﬁle] Datafile Datafile| | Datafile

Figure 4-9. Partitioning and grouping data into groups of files

Traditionally, partitioning a table based on derived values of a particular field
required creating an additional field that had to be maintained separately and
required users to have knowledge of that separate field when querying. For example:

o Partitioning by day, month, or year on a timestamp column required you to
create an additional column based on the timestamp expressing the year, month,
or day in isolation.

o Partitioning by the first letter of a text value required you to create an additional
column that only had that letter.

o Partitioning into buckets (a set number of divisions to evenly distribute records
into based on a hash function) required you to create an additional column that
stated which bucket the record belonged in.

Youd then set the partitioning at table creation to be based on the derived fields, and
the files would be organized into subdirectories based on their partition:

--Spark SQL
CREATE TABLE MyHiveTable (...) PARTITIONED BY month;

Youd have to manually transform the value every time you inserted records:
INSERT INTO MyTable (SELECT MONTH(time) AS month, ... FROM data_source);

When querying the table, the engine would have no awareness of the relationship
between the original field and the derived field. This would mean that the following
query would benefit from partitioning:

SELECT * FROM MYTABLE WHERE time BETWEEN '2022-07-01 00:00:00' AND '2022-07-31
00:00:00' AND month = 7;

However, users often aren’t aware of this workaround column (and they shouldn’t
have to be). This means that most of the time, users would issue a query similar to the

Partitioning | 83

following, which would result in a full table scan, making the query take much longer
to complete and consume far more resources:

SELECT * FROM MYTABLE WHERE time BETWEEN '2022-07-01 00:00:00' AND '2022-07-31
00:00:00"';

The preceding query is more intuitive for a business user or data analyst using the
data, as they may not be as aware of the internal engineering of the table, resulting in
many accidental full table scans. This is where Iceberg’s hidden partitioning capability
comes in.

Hidden Partitioning

Apache Iceberg handles partitioning quite differently, addressing many of these pain
points when optimizing your tables with partitioning. One resulting feature of this
approach is called hidden partitioning.

It starts with how Apache Iceberg tracks partitioning. Instead of tracking it by relying
on how files are physically laid out, Iceberg tracks the range of partition values at the
snapshot and manifest levels, allowing for many levels of new flexibility:

o Instead of having to generate additional columns to partition based on transform
values, you can use built-in transforms that engines and tools can apply when
planning queries from the metadata.

o Since you don't need an additional column when using these transforms, you
store less in your datafiles.

« Since the metadata allows the engine to be aware of the transform on the original
column, you can filter solely on the original column and get the benefit of
partitioning.

That means if you create a table partitioned by month:
CREATE TABLE catalog.MyTable (...) PARTITIONED BY months(time) USING iceberg;
the following query would benefit from partitioning:

SELECT * FROM MYTABLE WHERE time BETWEEN '2022-07-01 00:00:00' AND '2022-07-31
00:00:00';

As you may have seen in the prior CREATE TABLE statement, you apply transforms like
a function on the target column being transformed. Several transforms are available
when planning your partitioning;

o year (just the year)

+ month (month and year)

« day (day, month, and year

84 | Chapter4: Optimizing the Performance of Iceberg Tables

o hour (hours, day, month, and year)
e truncate

¢ bucket

The year, month, day, and hour transforms work on a timestamp column. Keep in
mind that if you specify month, the partition values as tracked in the metadata will
reflect the month and year of the timestamp, and if you use day, they will reflect the
year, month, and day of the timestamp, so there is no need to use multiple transforms
for more granular partitioning.

The truncate transform partitions the table based on the truncated value of a col-
umn. For example, if you wanted to partition a table based on the first letter of a
person’s name, you could create a table like so:

CREATE TABLE catalog.MyTable (...) PARTITIONED BY truncate(name, 1) USING
iceberg;

The bucket transform is perfect for partitioning based on a field with high cardinality
(lots of unique values). The bucket transform will use a hash function to distribute
the records across a specified number of buckets. So, for example, maybe you want
to partition voter data based on zip codes, but there are so many possible zip codes
that you would end up with too many partitions with small datafiles. You could run
something like the following:

CREATE TABLE catalog.voters (...) PARTITIONED BY bucket(24, zip) USING iceberg;

Any bucket will have several zip codes included, but at least if you look for a particu-
lar zip code, you are not doing a full table scan, just a scan of the bucket that includes
the zip code youre searching for. So, with Apache Iceberg’s hidden partitioning,
you have a more expressive way to express common partitioning patterns. Taking
advantage of them requires no additional thought from the end user than to filter by
the fields theyd naturally filter by.

Partition Evolution

Another challenge with traditional partitioning is that since it relied on the physical
structure of the files being laid out into subdirectories, changing how the table was
partitioned required you to rewrite the entire table. This becomes an inevitable
problem as data and query patterns evolve, necessitating that we rethink how we
partition and sort the data.

Apache Iceberg solves this problem with its metadata-tracked partitioning as well,
because the metadata tracks not only partition values but also historical partition
schemes, allowing the partition schemes to evolve. So, if the data in two different
files were written based on two different partition schemes, the Iceberg metadata

Partitioning | 85

would make the engine aware so that it could create a plan with partition scheme A
separately from partition scheme B, creating an overall scan plan at the end.

For example, let’s say you have a table of membership records partitioned by the year
in which members registered:

CREATE TABLE catalog.members (...) PARTITIONED BY years(registration_ts) USING
iceberg;
Then, several years later, the pace of membership growth made it worthwhile to
start breaking the records down by month. You could alter the table to adjust the
partitioning like so:

ALTER TABLE catalog.members ADD PARTITION FIELD months(registration_ts)

The neat thing about Apache Iceberg’s date-related partition transforms is that if
you evolve to something granular, there is no need to remove the less granular
partitioning rule. However, if you are using bucket or truncate and you decide you no
longer want to partition the table by a particular field, you can update your partition
scheme like so:

ALTER TABLE catalog.members DROP PARTITION FIELD bucket(24, id);

When a partitioning scheme is updated, it applies only to new data written to the
table going forward, so there is no need to rewrite the existing data. Also, keep in
mind that any data rewritten by the rewriteDataFiles procedure will be rewritten
using the new partitioning scheme, so if you want to keep older data in the old
scheme, make sure to use the proper filters in your compaction jobs to not rewrite it.

Other Partitioning Considerations

Say you migrate a Hive table using the migrate procedure (discussed in Chapter 13).
It may currently be partitioned on a derived column (e.g., a month column based on a
timestamp column in the same table), but you want to express to Apache Iceberg that
it should use an Iceberg transform instead. There is a REPLACE PARTITION command
for just this purpose:

ALTER TABLE catalog.members REPLACE PARTITION FIELD registration_day WITH
days(registration_ts) AS day_of_registration;
This will not alter any datafiles, but it will allow the metadata to track the partition
values using Iceberg transforms.

You can optimize tables in many ways. For example, using partitioning to write data
with unique values to unique files, sorting the data in those files, and then making
sure to compact those files into fewer larger files will keep your table performance
nice and crisp. Although it’s not always about general use optimization, there are
particular use cases, such as row-level updates and deletes, that you can optimize for
as well using copy-on-write and merge-on-read.

86 | Chapter4: Optimizing the Performance of Iceberg Tables

Copy-on-Write Versus Merge-on-Read

Another consideration when it comes to the speed of your workloads is how you
handle row-level updates. When you are adding new data, it just gets added to a new
datafile, but when you want to update preexisting rows to either update or delete
them, there are some considerations you need to be aware of:

o In data lakes, and therefore in Apache Iceberg, datafiles are immutable, meaning
they can’t be changed. This provides lots of benefits, such as the ability to achieve
snapshot isolation (since files that old snapshots refer to will have consistent data).

« If youre updating 10 rows, there is no guarantee they are in the same file, so you
may have to rewrite 10 files and every row of data in them to update 10 rows for
the new snapshot.

There are three approaches to dealing with row-level updates, covered in detail
throughout this section and summarized in Table 4-2.

Table 4-2. Row-level update modes in Apache Iceberg

Update style Read speed Write speed Best practice
Copy-on-write Fastest reads Slowest updates/deletes
Merge-on-read (position deletes) Fast reads Fast updates/deletes Use regular compaction to minimize read costs.

Merge-on-read (equality deletes) Slow reads Fastest updates/deletes Use more frequent compaction to minimize
read costs.

Copy-on-Write

The default approach is referred to as copy-on-write (COW). In this approach, if even
a single row in a datafile is updated or deleted, that datafile is rewritten, and the new
file takes its place in the new snapshot. You can see this exemplified in Figure 4-10.

[Snapshotos J[JPDATE catalog.people SET age = 46 WHERE id = :;;ﬂi[Snapshot 06 J

File003.parquet File008.parquet
D] Name [Agel [(D[Name [Age)
1 Bob Jones | 55 |1 Bob Jones | 55
2 | SusieMills |35 2 | SusieMills |35
3 | Grace Gregory | 45 | | 3 |GraceGregory| 46 |

Figure 4-10. The results of using copy-on-write for updating a single row

This is ideal if you're optimizing for reads because read queries can just read the data
without having to reconcile any deleted or updated files. However, if your workloads

Copy-on-Write Versus Merge-on-Read | 87

consist of very regular row-level updates, rewriting entire datafiles for those updates may
slow down your updates beyond what your SLAs allow. The pros of this approach include
faster reads, while the cons involve slower row-level updates and deletes.

Merge-on-Read

The alternative to copy-on-write is merge-on-read (MOR), where instead of rewrit-
ing an entire datafile, you capture in a delete file the records to be updated in the
existing file, with the delete file tracking which records should be ignored.

If you are deleting a record:

o The record is listed in a delete file.
o When a reader reads the table, it will reconcile the datafile with the delete file.

If you are updating a record:

o The record to be updated is tracked in a delete file.
o A new datafile is created with only the updated record.

o When a reader reads the table, it will ignore the old version of the record because
of the delete file and use the new version in the new datafile.

This is depicted in Figure 4-11.

[Snapshotos][.JFI}.&IE catalog.people SET age = 46 WHERE id = :;;E][Snapshot 06]

File0O3.parquet | File003.parquet
D| Name |[Age] D[Name |Age
Bob Jones | 55 >
Susie Mills | 35
Grace Gregory | 45 |

File not rewritten

Delete file and new datdfile written e { Bob Jones | 55

1
2 | SusieMills |35
3 | Grace Gregory | 45 |

Wi —

Delete001.avro File008.parquet

File |Position]||{ID] Name |Age]
Fileo03| 3 J|| (3 | Grace Gregory | 46 |

Figure 4-11. The results of using merge-on-read for updating a single row

This avoids the need to rewrite unchanged records to new files just because they exist
in a datafile with a record to be updated, speeding up the write transaction. But it
comes at the cost of slower reads, as queries will have to scan the delete files to know
which records to ignore in the proper datafiles.

88 | Chapter4: Optimizing the Performance of Iceberg Tables

To minimize the cost of reads, you'll want to run regular compaction jobs, and to
keep those compaction jobs running efficiently, you'll want to take advantage of some
of the properties you learned before:

+ Use a filter/where clause to only run compaction on the files ingested in the last
time frame (hour, day).

o Use partial progress mode to make commits as file groups are rewritten so that
readers can start seeing marginal improvements sooner rather than later.

Using these techniques, you can speed up the write side of heavy update workloads
while minimizing the costs to read performance. The advantage of this approach
includes faster row-level updates, but this comes with the drawback of slower reads
due to the need to reconcile delete files.

When doing MOR writes, delete files enable you to track which records need to
be ignored in existing datafiles for future reads. We'll use an analogy to help you
understand the high-level concept between the different types of delete files. (Keep in
mind which types of delete files are written, as this is usually decided by the engine
for particular use cases, not typically by table settings.)

When you have a ton of data and you want to kick out a specific row, you have a
couple of options:

 You can look for the row data based on where it’s sitting in the dataset, kind of
like finding your friend in a movie theater by their seat number.

» You can look for the row data based on what it's made of, like picking out your
friend in a crowd because theyre wearing a bright red hat.

If you use the first option, you'll use what are called positional delete files. But if you
use the second option, you’ll need equality delete files. Each method has its own
strengths and weaknesses. This means that depending on the situation, you might
want to pick one over the other. It’s all about what works best for you!

Let’s explore these two types of delete files. Position deletes track which rows in which
files should be ignored. The following table is an example of how this data is laid out
in a position delete file:

Row to delete (position deletes)
Filepath Position
001.parquet 0
001.parquet 5

006.parquet 5

Copy-on-Write Versus Merge-on-Read | 89

When reading the specified files, the position delete file will skip the row at the
specified position. This requires a much smaller cost at read time since it has a pretty
specific point at which it must skip a row. However, this has write time costs, since
the writer of the delete file will need to know the position of the deleted record, which
requires it to read the file with the deleted records to identify those positions.

Equality deletes instead specify values that, if a record matches, should be ignored.
The following table shows how the data in an equality delete file may be laid out:

Rows to delete (equality deletes)

Team State
Yellow NY
Green MA

This requires no write time costs since you don't need to open and read files to track
the targeted values, but it has much greater read time costs. The read time costs
exist because there is no information where records with matching values exist, so
when reading the data, there has to be a comparison with every record that could
possibly contain a matching record. Equality deletes are great if you need the highest
write speed possible, but aggressive compaction should be planned to reconcile those
equality deletes to reduce the impact on your reads.

Configuring COW and MOR

Whether a table is configured to handle row-level updates via COW or MOR depends
on the following:

o The table properties
o Whether the engine you use to write to Apache Iceberg supports MOR writes

The following table properties determine whether a particular transaction is handled
via COW or MOR:

write.delete.mode
Approach to use for delete transactions

write.update.mode
Approach to use for update transactions

write.merge.mode
Approach to use for merge transactions

Keep in mind that for this and all Apache Iceberg table properties, while many are
part of the specification, it is still on the specific compute engine to honor the speci-
fication. You may run into different behavior, so read up on which table properties

90 | Chapter4: Optimizing the Performance of Iceberg Tables

are honored by engines you use for particular jobs that use those properties. Query
engine developers will have every intention of honoring all Apache Iceberg table
properties, but this does require implementations for the specific engine’s architec-
ture. Over time, engines should have all these properties honored so that you get the
same behavior across all engines.

Since Apache Spark support for Apache Iceberg is handled from within the Apache
Iceberg project, all these properties are honored from within Spark, and they can be
set at the creation of a table in Spark like so:

CREATE TABLE catalog.people (
id int,
first_name string,
last_name string

) TBLPROPERTIES (
'write.delete.mode'="copy-on-write',
'write.update.mode'="merge-on-read',
'write.merge.mode'="'merge-on-read"'

) USING iceberg;

This property can also be set after the table is created using an ALTER TABLE
statement:

ALTER TABLE catalog.people SET TBLPROPERTIES (
'write.delete.mode'="merge-on-read’',
'write.update.mode'="copy-on-write',
'write.merge.mode'="'copy-on-write'
);
It’s as simple as that. But remember the following when working with non-Apache
Spark engines:

o Table properties may or may not be honored. It’s up to the engine to implement
support.

o When using MOR, make sure the engines you use to query your data can read
delete files.

Other Considerations

Beyond your datafiles and how they are organized, there are many levers for improv-
ing performance. We will discuss many of them in the following sections.

Metrics Collection

As discussed in Chapter 2, the manifest for each group of datafiles is tracking metrics
for each field in the table to help with min/max filtering and other optimizations. The
types of column-level metrics that are tracked include:

Other Considerations | 91

o Counts of values, null values, and distinct values

 Upper and lower bound values

If you have very wide tables (i.e., tables with lots of fields; e.g., 100+), the number
of metrics being tracked can start to become a burden on reading your metadata. For-
tunately, using Apache Iceberg’s table properties, you can fine-tune which columns
have their metrics tracked and which columns don’t. This way, you can track metrics
on columns that are often used in query filters and not capture metrics on ones that
aren’t, so their metrics data doesn’t bloat your metadata.

You can tailor the level of metrics collection for the columns you want (you don’t
need to specify all of them) using table properties, like so:

ALTER TABLE catalog.db.students SET TBLPROPERTIES (
'write.metadata.metrics.column.coll'="none',
'write.metadata.metrics.column.col2'="full',
'write.metadata.metrics.column.col3'="'counts',
'write.metadata.metrics.column.col4'="truncate(16)',

);

As you can see, you can set how the metrics are collected for each individual column
to several potential values:

none
Don’t collect any metrics.

counts
Only collect counts (values, distinct values, null values).

truncate(XX)
Count and truncate the value to a certain number of characters, and base the
upper/lower bounds on that. So, for example, a string column may be truncated
to 16 characters and have its metadata value ranges be based on the abbreviated
string values.

full
Base the counts and upper/lower bounds on the full value.

You don’t need to set this explicitly for every column as, by default, Iceberg sets this to
truncate(16).

Rewriting Manifests

Sometimes the issue isn’t your datafiles, as they are well sized with well-sorted data.
It’s that they’ve been written across several snapshots, so an individual manifest could
be listing more datafiles. While manifests are more lightweight, more manifests still
means more file operations. There is a separate rewriteManifests procedure to

92 | Chapter4: Optimizing the Performance of Iceberg Tables

rewrite only the manifest files so that you have a smaller total number of manifest
files, and those manifest files list a large number of datafiles:

CALL catalog.system.rewrite_manifests('MyTable')

If you run into any memory issues while running this operation, you can turn off
Spark caching by passing a second argument: false. If you are rewriting lots of
manifests and they are being cached by Spark, it could result in issues with individual
executor nodes:

CALL catalog.system.rewrite_manifests('MyTable', false)

When it would be good to run this operation is a matter of when your datafile
sizes are optimal but the number of manifest files isn't. For example, if you have 5
GB of data in one partition split among 10 datafiles but these files are listed within
five manifest files, you don’t need to rewrite the datafiles, but you can probably
consolidate listing the 10 files into one manifest.

Optimizing Storage

As you make updates to the table or run compaction jobs, new files are created, but
old files aren’t being deleted since those files are associated with historical snapshots
of the table. To prevent storing a bunch of unneeded data, you should periodically
expire snapshots. Keep in mind that you cannot time-travel to an expired snapshot.
During expiration, any datafiles not associated with still-valid snapshots will get

deleted.
You can expire snapshots that were created on or before a particular timestamp:

CALL catalog.system.expire_snapshots('MyTable', TIMESTAMP '2023-02-01
00:00:00.000', 100)

The second argument is a minimum number of snapshots to retain (by default, it will
retain the last five days of snapshots), so it will only expire snapshots that are on or
before the timestamp. But if the snapshot falls within the 100 most recent snapshots,
it will not expire.

You can also expire particular snapshot IDs:

CALL catalog.system.expire_snapshots(table => 'MyTable', snapshot_ids =>
ARRAY(53))

In this example, a snapshot with the ID of 53 is expired. We can look up the snapshot
ID by opening the metadata.json file and examining its contents or by using the
metadata tables detailed in Chapter 10. You may have a snapshot where you expose
sensitive data by accident and want to expire that single snapshot to clean up the
datafiles created in that transaction. This would give you that flexibility. Expirations
are a transaction, so a new metadata.json file is created with an updated list of
valid snapshots.

Other Considerations | 93

There are six arguments that can be passed to the expire_snapshots procedure:

table
Table to run the operation on

older_than
Expires all snapshots on or before this timestamp

retain_last
Minimum number of snapshots to retain

snapshot_1ids
Specific snapshot IDs to expire

max_concurrent _deletes
Number of threads to use for deleting files

stream_results
When true, sends deleted files to the Spark driver by Resilient Distributed Data-
set (RDD) partition, which is useful for avoiding OOM issues when deleting
large files

Another consideration when optimizing storage is orphan files. These are files and
artifacts that accumulate in the table’s data directory but are not tracked in the metadata
tree because they were written by failed jobs. These files will not be cleaned up by
expiring snapshots, so a special procedure should sporadically be run to deal with this.
This procedure will look at every file in your table’s default location and assess whether
it relates to active snapshots. This can be an intensive process (which is why you should
only do it sporadically). To delete orphan files, run a command such as the following:

CALL catalog.system.remove_orphan_files(table => 'MyTable')

You can pass the following arguments to the removeOrphanFiles procedure:

table
Table to operate on

older_than
Only deletes files created on or before this timestamp

location
Where to look for orphan files; defaults to the table’s default location

dry_run
Boolean if true; won't delete files, but will return a list of what would be deleted

max_concurrent_deletes
Lists the max number of threads for deleting files

94 | Chapter4: Optimizing the Performance of Iceberg Tables

While for most tables the data will be located in its default location, there are times
you may add external files via the addFiles procedure (covered in Chapter 13)
and later may want to clean artifacts in these directories. This is where the location
argument comes in.

Write Distribution Mode

Write distribution mode requires an understanding of how massively parallel pro-
cessing (MPP) systems handle writing files. These systems distribute the work across
several nodes, each doing a job or task. The write distribution is how the records to
be written are distributed across these tasks. If no specific write distribution mode is
set, data will be distributed arbitrarily. The first X number of records will go to the
first task, the next X number to the next task, and so on.

Each task is processed separately, so that task will create at least one file for each
partition it has at least one record for. Therefore, if you have 10 records that belong in
partition A distributed across 10 tasks, you will end up with 10 files in that partition
with one record each, which isn’t ideal.

It would be better if all the records for that partition were allocated to the same tasks
so that they can be written to the same file. This is where the write distribution comes
in, that is, how the data is distributed among tasks. There are three options:

none
There is no special distribution. This is the fastest during write time and is ideal
for presorted data.

hash
The data is hash-distributed by partition key.

range
The data is range-distributed by partition key or sort order.

In a hash distribution, the value of each record is put through a hash function
and grouped together based on the result. Multiple values may end up in the same
grouping based on the hash function. For example, if you have the values 1, 2, 3, 4, 5,
and 6 in your data, you may get a hash distribution of data with 1 and 4 in task A, 2
and 5 in task B, and 3 and 6 in task C. You'll still write the smallest number of files
needed for all your partitions, but less sequential writing will be involved.

In a range distribution, the data is sorted and distributed, so youd likely have values
1 and 2 in task A, 3 and 4 in task B, and 5 and 6 in task C. This sorting will be done
by the partition value or by the SortOrder if the table has one. In other words, if a
SortOrder is specified, data will be grouped into tasks not just by partition value but
also by the value of the SortOrder field. This is ideal for data that can benefit from
clustering on certain fields. However, sorting the data for distribution sequentially has

Other Considerations | 95

more overhead than throwing the data in a hash function and distributing it based on
the output.

There is also a write distribution property to specify the behavior for deletes, updates,
and merges:

ALTER TABLE catalog.MyTable SET TBLPROPERTIES (
'write.distribution-mode'="hash',
'write.delete.distribution-mode'="none"',
'write.update.distribution-mode'="'range’,
'write.merge.distribution-mode'="hash',
);
In a situation where you are regularly updating many rows but rarely deleting rows,
you may want to have different distribution modes, as a different distribution mode
may be more advantageous depending on your query patterns.

Object Storage Considerations

Object storage is a unique take on storing data. Instead of keeping files in a neat
folder structure such as a traditional filesystem, object storage tosses everything into
what are called buckets. Each file becomes an object and gets a bunch of metadata
tagged along with it. This metadata tells us all sorts of things about the file; enabling
improved concurrency and resiliency when using object storage as the underlying
files can be replicated for regional access or concurrency while all users just interact
with it as a simple “object”

When you want to grab a file from object storage, you're not clicking through folders.
Instead, you're using APIs. Just like youd use a GET or PUT request to interact with
a website, youre doing the same here to access your data. For example, youd use a
GET request to ask for a file, the system checks the metadata to find the file, and voila,
you've got your data.

This API-first approach helps the system juggle your data, like making copies in
different places or dealing with loads of requests at the same time. Object storage,
which most cloud vendors provide, is ideal for data lakes and data lakehouses, but it
has one potential bottleneck.

Because of the architecture and how object stores handle parallelism, there are often
limits on how many requests can go to files under the same “prefix” Therefore, if you
wanted to access /prefix1/fileA.txt and /prefix1/fileB.txt, even though they are different
files, accessing both counts toward the limit on prefixl. This becomes a problem in
partitions with lots of files, as queries can result in many requests to these partitions
and can then run into throttling, which slows down the query.

Running compaction to limit the number of files in a partition can help, but Apache
Iceberg is uniquely suited for this scenario since it doesn’t rely on how its files are

96 | Chapter4: Optimizing the Performance of Iceberg Tables

https://oreil.ly/jBLXG

physically laid out, meaning it can write files in the same partition across many
prefixes.

You can enable this in your table properties like so:

ALTER TABLE catalog.MyTable SET TBLPROPERTIES (
'write.object-storage.enabled'= true
);
This will distribute files in the same partition across many prefixes, including a hash
to avoid potential throttling.

So, instead of this:

s3://bucket/database/table/field=valuel/datafilel.parquet
s3://bucket/database/table/field=valuel/datafile2.parquet
s3://bucket/database/table/field=valuel/datafile3.parquet

you'll get this:

s3://bucket/4809098/database/table/field=valuel/datafilel.parquet
s3://bucket/5840329/database/table/field=valuel/datafile2.parquet
s3://bucket/2342344/database/table/field=valuel/datafile3.parquet

With the hash in the filepath, each file in the same partition is now treated as if it
were under a different prefix, thereby avoiding throttling.

Datafile Bloom Filters

A bloom filter is a way of knowing whether a value possibly exists in a dataset.
Imagine a lineup of bits (those Os and 1s in binary code), all set to a length you
decide. Now, when you add data to your dataset, you run each value through a
process called a hash function. This function spits out a spot on your bit lineup, and
you flip that bit from a 0 to a 1. This flipped bit is like a flag that says, “Hey, a value
that hashes to this spot might be in the dataset.”

For example, let’s say we feed 1,000 records through a bloom filter that has 10 bits.
When it’s done, our bloom filter might look like this:

[0’1J1’010J1’1J1’1J0]

Now let’s say we want to find a certain value; we'll call it X. We put X through the
same hash function, and it points us to spot number 3 on our bit lineup. According to
our bloom filter, there’s a 1 in that third spot. This means there’s a chance our value X
could be in the dataset because a value hashed to this spot before. So we go ahead and
check the dataset to see if X is really there.

Other Considerations | 97

Now let’s look for a different value; well call it Y. When we run Y through our hash
function, it points us to the fourth spot on our bit lineup. But our bloom filter has a
0 there, which means no value hashed to this spot. So we can confidently say that Y is
definitely not in our dataset, and we can save time by not digging through the data.

Bloom filters are handy because they can help us avoid unnecessary data scans. If
we want to make them more precise, we can add more hash functions and bits. But
remember, the more we add, the bigger our bloom filter gets, and the more space it
will need. As with most things in life, it’s a balancing act. Everything is a trade-off.

You can enable the writing of bloom filters for a particular column in your Parquet
files (this can also be done for ORC files) via your table properties:

ALTER TABLE catalog.MyTable SET TBLPROPERTIES (
'write.parquet.bloom-filter-enabled.column.coll'= true,
'write.parquet.bloom-filter-max-bytes'= 1048576

);
Then engines querying your data may take advantage of these bloom filters to help
make reading the datafiles even faster by skipping datafiles where bloom filters clearly
indicate that the data you need doesn’t exist.

Conclusion

This chapter explored various strategies for optimizing the performance of Iceberg
tables. We looked at critical table performance optimization methods such as com-
paction, sorting, z-ordering, copy-on-write versus merge-on-read mechanisms, and
hidden partitioning. Each of these components plays a pivotal role in enhancing
query efficiency, reducing read and write times, and ensuring optimal utilization of
resources. Understanding and implementing these strategies effectively can lead to
significant improvements in the management and operation of Apache Iceberg tables.

In Chapter 5, we'll explore the concept of an Iceberg catalog, helping us make sure
our Iceberg tables are portable and discoverable between our tools.

98 | Chapter4: Optimizing the Performance of Iceberg Tables

CHAPTER 5
Iceberg Catalogs

In this chapter, we'll dive into Iceberg catalogs. You've seen how a catalog is a critical
component of Iceberg that allows it to ensure consistency with multiple readers and
writers and to discover what tables are available in the environment. In this chapter,
we'll cover:

o The requirements of a catalog in general, and additional requirements recom-
mended for the use of a catalog in production

o The different catalog implementations, including pros, cons, and how to config-
ure Spark to use the catalog

« In what situations you may want to consider migrating catalogs

« How to migrate from one catalog to another

Requirements of an lceberg Catalog

Iceberg provides a catalog interface that requires the implementation of a set of func-
tions, primarily ones to list existing tables, create tables, drop tables, check whether a
table exists, and rename tables.

As it is an interface, it has multiple implementations, including Hive Metastore, AWS
Glue, and a filesystem catalog (Hadoop). In addition to the requirement of imple-
menting the functions defined in the interface, the primary high-level requirement
for a catalog implementation to work as an Iceberg catalog is to map a table path (e.g.,
db1.tablel) to the filepath of the metadata file that has the table’s current state.

Since this is a generic requirement and there are a variety of catalog implementations
with each system having inherent differences as to how they store data, different
catalogs do this mapping differently. For example, with a filesystem as the catalog,

99

https://oreil.ly/flAG3

there’s a file called version-hint.text in the table’s metadata folder that contains the
version number of the current metadata file. With the Hive Metastore as the catalog,
the table entry in the Hive Metastore has a table property called location that stores
the location of the current metadata file.

While these are the bare minimum requirements to use a catalog implementation as an
Iceberg catalog, there’s a distinction between being able to functionally use a catalog and
a catalog being recommended for production usage. That distinction is making sure there
is no data loss when there are multiple concurrent jobs writing to the same table. For
development and experimentation purposes, this requirement isn’t necessary. However,
in production, data loss can obviously have huge impacts on the business.

The primary requirement for an Iceberg catalog to be used in production is that it
must support atomic operations for updating the current metadata pointer. This is
required so that all readers and writers see the same state of the table at a given point
in time and that when there are two concurrent writers, the second writer to commit
doesn’'t overwrite the changes made by the first writer, resulting in data loss.

Catalog Comparison

In this section, we’ll walk through the more popular Iceberg catalogs. For each
catalog, we'll cover how the catalog maps a table path to the location of that table’s
current metadata file, pros and cons of the catalog, situations where you should
consider using the catalog, and how to configure Apache Spark to use the catalog.

The main dimensions by which to compare and contrast the different catalogs are:

o Whether it's recommended for production

o Whether it requires an external system, and whether that external system is
self-hosted or is a managed service (or can be)

o Whether it has wide engine and tool compatibility
« Whether it supports multitable and multistatement transactions

o Whether it is cloud agnostic

The Hadoop Catalog

The catalog that is the easiest to get started with Iceberg is the Hadoop catalog. This
is because it doesn’t require any external systems or processes. Despite its name, the
Hadoop catalog works on any filesystem (or things that look like filesystems, such as
cloud object stores), including the Hadoop Distributed File System (HDFS), Amazon
Simple Storage Service (Amazon S3), Azure Data Lake Storage (ADLS), and Google
Cloud Storage (GCS).

100 | Chapter5:Iceberg Catalogs

At its core, the Hadoop catalog maps the table path to its current metadata file by
listing the contents of the table’s metadata directory and choosing the most recently
written metadata file based on the timestamp listed for each file in the filesystem.
Generally, however, engines will write a file called version-hint.txt in the table’s meta-
data folder containing a single number that the engine/tool then uses to retrieve the
indicated metadata file by name—for example, v{n}.metadata. json.

Pros and cons of the Hadoop catalog

The main pro of the Hadoop catalog is that it doesn’t require any external systems to
run. All it requires is a filesystem, thereby lowering the barrier to getting started with
Iceberg.

However, there is a big downside to the Hadoop catalog: it is not recommended for
production usage. There are a few reasons for this.

One reason is that it requires the filesystem to provide a file/object rename operation
that is atomic to prevent data loss when concurrent writes occur. Some filesystems
and object stores support this, but not all. For example, ADLS and HDFS provide
an atomic rename operation so that you won't have data loss if concurrent writes
are made to the same table, but S3 does not. For S3, you can leverage a DynamoDB
table to achieve the atomicity needed to prevent data loss during concurrent writes.
However, at that point, youre using an external system anyway (and DynamoDB
is supported as an Iceberg catalog on its own), so you might as well not use the
Hadoop catalog.

A second reason is that when a system is configured to use the Hadoop catalog for
a source, it can use only one warehouse directory, as it depends on the warehouse
location for listing tables. For example, you can use a single bucket only if you're
using cloud object storage such as S3 or ADLS. If you wanted to use more than one
bucket for your set of tables in your environment, you would have to configure a
separate source for each bucket.

A third reason is that when youre doing things that require listing the namespaces
(aka databases) and/or tables, you may hit performance issues, especially when you
have a large number of namespaces and tables. This is because the listing of namespa-
ces and tables is performed by doing a list operation on the filesystem. For situations
such as when youre running on S3 and you have a lot of namespaces and/or tables,
this can take a while.

A final reason is that there is no ability to drop the table from the catalog or remove
the reference to it in the catalog and keep the data. Dropping the table without
removing the data allows you to undo the operation if needed (similar to time travel).
For example, in Spark SQL, when youre using a catalog other than the Hadoop
catalog, if you run DROP TABLE <tablename>, it only removes the reference from the

Catalog Comparison | 101

catalog but doesn’t delete the data. DROP TABLE <tablename> PURGE is how you can
drop the table and delete the data if you are positive it wouldn’t need to be undone
at some point. This isn't possible if you use the Hadoop catalog, because even if
the version-hint.txt file is deleted, the table still exists in the catalog definition since
there are files in warehouse_dir/namespacel/tablel/metadata. The current metadata
file is still retrievable by doing a listing of the metadata directory and choosing the
most recently created metadata file (going off the timestamp listed for the file in the
filesystem).

Hadoop catalog use cases

Given these pros and cons, there are a couple of situations where you should consider
using the Hadoop catalog. One very common situation is when youre new to Iceberg
and want to get started quickly. Since you already have a distributed filesystem,
you have all you need to use Iceberg with the Hadoop catalog; no other system
or infrastructure is required. Plus, as we’ll discuss later in this chapter, migrating
catalogs is quick and easy, so you can get started with the Hadoop catalog and
migrate to a production-ready catalog when you’re ready to move into production.
The other situation where you should consider using the Hadoop catalog is if you're
experimenting or in a testing or development environment where either there won't
be concurrent writers to the same table or, if there are, data loss won’t be an issue.

Configuring Spark to use the Hadoop catalog

The following code snippet shows how to launch a Spark SQL shell where you can
use my_catalogl to write and read Iceberg tables using the Hadoop catalog:

spark-sql --packages
org.apache.iceberg:iceberg-spark-runtime-3.3_2.12:0.14.0\

--conf
spark.sql.extensions=org.apache.iceberg.spark.extensions.Iceberg
SparkSessionExtensions \

--conf
spark.sql.catalog.my_catalogl=org.apache.iceberg.spark.SparkCatalog \

--conf spark.sql.catalog.my_catalogl.type=hadoop \

--conf
spark.sql.catalog.my_catalogl.warehouse=<protocol>://<path>

The Hive Catalog

The Hive catalog is a popular implementation used for an Iceberg catalog. It maps a
table’s path to its current metadata file by using the location table property in the
table’s entry in the Hive Metastore. The value of this property is the absolute path in
the filesystem where the table’s current metadata file can be located.

102 | Chapter5:Iceberg Catalogs

Pros and cons of the Hive catalog

The primary pro of the Hive catalog is that it is compatible with a wide variety of
engines and tools, since so many already support connecting to the Hive Metastore,
albeit originally for tables arranged in the Hive table format. An additional advantage
is that it is cloud agnostic.

There are two cons to the Hive catalog. The first is that it requires running an additional
service yourself. Unlike some other catalogs, the Hive Metastore used for the Hive catalog
needs to be set up and managed by the user. However, there are managed options
available, such as Amazon EMR. The second con is that it doesn’t provide support for
multitable transactions. Multitable transactions are a key capability in databases, provid-
ing support for consistency and atomicity for one or more operations that involve more
than one table. Their primary significance is their ability to maintain data consistency
in an environment, which is key for maintaining data quality and trust in the data.
Multitable transactions are discussed in more depth in Chapter 10.

Hive catalog use cases

The primary situation in which you might want to choose this catalog is if you
already have a Hive Metastore running in your environment and plan to keep the
instance around for a while. Keep in mind, though, that if you need multitable
transactions, the Hive catalog doesn’t support that.

Configuring Spark to use the Hive catalog

The following code snippet shows how to launch a Spark SQL shell where you can
use my_catalogl to write and read Iceberg tables using the Hive catalog:

spark-sql --packages
org.apache.iceberg:iceberg-spark-runtime-3.3_2.12:0.14.0\

--conf
spark.sql.extensions=org.apache.iceberg.spark.extensions.Iceberg
SparkSessionExtensions \

--conf
spark.sql.catalog.my_catalogl=org.apache.iceberg.spark.SparkCatalog \

--conf spark.sql.catalog.my_catalogl.type=hive \

--conf
spark.sql.catalog.my_catalogl.uri=thrift://<metastore-host>:<port>

The AWS Glue Catalog

The AWS Glue catalog is another implementation for Iceberg catalogs. It utilizes the
AWS Glue Data catalog as a centralized metadata repository to track Iceberg table
metadata. It maps a table’s path to its current metadata file as a table property called
metadata_location in the table’s entry in Glue. The value for this property is the
absolute path to the metadata file in the filesystem.

Catalog Comparison | 103

Pros and cons of the AWS Glue catalog

There are multiple advantages to using AWS Glue as your Iceberg catalog. One big
one is that AWS Glue is a managed service, so it reduces operational overhead com-
pared to managing your own metastore, as you would in Hive. Another advantage is
that because it’s a native AWS service, it has tight integration with other AWS services.

However, the AWS Glue catalog also has its downsides. Like the Hive catalog, it does
not support multitable transactions. Furthermore, it’s specific to the AWS ecosystem,
meaning that operating in a multicloud environment and using AWS Glue as your
Iceberg catalog can complicate your deployment.

AWS Glue catalog use cases

The AWS Glue catalog is a good choice if youre heavily invested in AWS services,
don’t need a multicloud solution, and/or need a managed solution for a catalog. It
can also be useful for getting started with Iceberg quickly since you don't need to pro-
vision anything. But remember, if your data processing scenarios require multitable
transactions, this catalog might not be suitable.

Configuring Spark to use the AWS Glue catalog

The following code snippet shows how you can launch a Spark SQL shell where you
can use my_catalog1 to write and read Iceberg tables using the AWS Glue catalog:

spark-sql --packages "org.apache.iceberg:iceberg-spark-
runtime-x.x_X.Xx:X.X.X,software.amazon.awssdk:bundle:x.xx.xxx,software.ama-
zon.awssdk:url-connection-client:x.xx.xxx" \

--conf spark.sql.catalog.my_catalogl=org.apache.iceberg.spark.SparkCatalog \
--conf spark.sql.catalog.my_catalogl.warehouse=s3://<path> \

--conf spark.sql.catalog.my_catalogl.catalog-impl=org.apache.ice-
berg.aws.glue.GlueCatalog \

--conf spark.sql.catalog.my_catalogl.io-impl=org.apache.iceberg.aws.s3.53FilelO \
--conf spark.hadoop.fs.s3a.access.key=$AWS_ACCESS_KEY \

--conf spark.hadoop.fs.s3a.secret.key=$AWS_SECRET_ACCESS_KEY

The Nessie Catalog

Project Nessie is another option for an Iceberg catalog. With Nessie, a table’s path is
mapped to its current metadata file using a table property called metadatalLocation
stored within the table’s entry in Nessie. This property’s value is the absolute path of
the current metadata file for the table.

Pros and cons of the Nessie catalog

One advantage of Project Nessie is that it introduces a Git-like experience to data
lakes and enables the concept of “data as code,” meaning data and its related metadata
can be versioned and managed like source code. This is particularly valuable for

104 | Chapter5:Iceberg Catalogs

data engineering and data science workflows where safe changes, reproducibility, and
traceability are crucial. Another advantage of using Project Nessie as your Iceberg
catalog is that it enables multitable and multistatement transactions like a data
warehouse does. A third advantage is that it’s cloud agnostic, so you can use the
same catalog if you are multicloud today, will be multicloud tomorrow, or want to
minimize cloud vendor lock-in.

There are two disadvantages of Project Nessie. One is that not all engines and tools
support Nessie as a catalog. At the time of this writing, Spark, Flink, Dremio, Presto,
Trino, and Pylceberg support Nessie as a catalog. The other disadvantage is that you
have to run the infrastructure yourself, as you do in Hive Metastore. However, similar
to how AWS Glue offers a hosted version (or at least a compatible one, so it looks like
a Hive Metastore), Dremio offers a hosted version of Project Nessie.

Nessie catalog use cases

Nessie is a good choice for your Iceberg catalog if you need multitable/multistatement
transactions, want to leverage the data-as-code paradigm, and/or have a goal to be
cloud agnostic.

Configuring Spark to use the Project Nessie catalog

The following code snippet shows how you can launch a Spark SQL shell where you
can use my_catalogl to write and read Iceberg tables using Project Nessie as your
Iceberg catalog:

spark-sql --packages
"org.apache.iceberg:iceberg-spark-runtime-x.x_x.xx:X.X.X,org.projectnes-
sie:nessie-spark-extensions-x.x_x.xX:X.xx.x,software.amazon.awssdk:bun-
dle:x.xx.xxx,software.amazon.awssdk:url-connection-client:x.xx.xxx" \

--conf spark.sql.extensions="org.apache.iceberg.spark.extensions.Ice-
bergSparkSessionExtensions,org.projectnessie.spark.extensions.NessieSparkSes-
sionExtensions" \

--conf spark.sql.catalog.my_catalogl=org.apache.iceberg.spark.SparkCatalog \
--conf spark.sql.catalog.my_catalogl.catalog-impl=org.apache.iceberg.nessie.Nes-
sieCatalog \

--conf spark.sql.catalog.my_catalogl.uri=SNESSIE_URI \

--conf spark.sql.catalog.my_catalogl.ref=main \

--conf spark.sql.catalog.my_catalogl.authentication.type=BEARER \

--conf spark.sql.catalog.my_catalogl.authentication.token=$TOKEN \

--conf spark.sql.catalog.my_catalogl.warehouse=<protocol>://<path> \

--conf spark.sql.catalog.my_catalogl.io-impl=org.apache.iceberg.aws.s3.S3Filel0

The REST Catalog

The REST catalog, as the name suggests, leverages a RESTful service provider as an
Iceberg catalog. This approach provides an interesting level of flexibility because the
REST catalog is an interface rather than a specific implementation, unlike most other

Catalog Comparison | 105

catalogs. The service implementing the REST catalog interface can choose to store the
mapping of a table’s path to its current metadata file in any way it chooses. It could
even store it in one of the other catalogs mentioned in this section.

Pros and cons of the REST catalog

There are a few pros to the REST catalog. One is that it requires fewer packages and
dependencies compared to other catalogs, simplifying deployment and management.
This is because, at its core, it just uses standard HTTP communication. Another
advantage is the flexibility it provides, since it can be provided by any service capable
of handling RESTful requests and responses, and the service’s data store can be
many different things. A third advantage is that the REST catalog supports multitable
transactions, offering flexibility for complex operations across multiple tables. Finally,
it’s cloud agnostic, so you can use the same catalog if you are multicloud today, will be
multicloud tomorrow, or want to minimize cloud vendor lock-in.

There are three main disadvantages of the REST catalog. One is that you have to
run a process to handle and respond to the REST calls from engines and tools. If
youre running it in production, you’ll also need to run or use an additional data
storage service for storing state. A second disadvantage is that, at the time of this
writing, there is no public implementation of the backend service to support REST
catalog endpoints, meaning you’ll have to write your own. An alternative for these
two disadvantages is to use a REST catalog providing a hosted service such as Tabular.
The third disadvantage is that not all engines and tools support the REST catalog. At
the time of this writing, Spark, Trino, Pylceberg, and Snowflake support the REST
catalog.

REST catalog use cases

The REST catalog would be a good choice if you're looking for a flexible, customiza-
ble solution that can integrate with a variety of backend data stores, if you need the
ability to do multitable transactions, and/or if you have a goal to be cloud agnostic.

Configuring Spark to use the REST catalog

The following code snippet shows how you can launch a Spark SQL shell where you
can use my_catalogl to write and read Iceberg tables using the REST catalog as your
Iceberg catalog:

spark-sql --packages
org.apache.iceberg:iceberg-spark-runtime-3.3_2.12:0.14.0\

--conf
spark.sql.extensions=org.apache.iceberg.spark.extensions.Iceberg
SparkSessionExtensions \

--conf
spark.sql.catalog.my_catalogl=org.apache.iceberg.spark.SparkCatalog \

--conf spark.sql.catalog.my_catalogl.type=rest \

106 | Chapter5:Iceberg Catalogs

--conf
spark.sql.catalog.my_catalogl.uri=http://<host>:<port>

The JDBC Catalog

The JDBC catalog leverages Java Database Connectivity (JDBC)-compliant data
stores for Iceberg’s catalog interface, making it a versatile choice if your data resides in
a JDBC-supporting database such as MySQL or PostgreSQL. Note that the database
to which JDBC connects must support atomic transactions.

The JDBC catalog maps a table’s path to its current metadata file via a table property
called metadata_location in the JDBC-compliant database, storing the location of
the current metadata file for the table.

Pros and cons of the JDBC catalog

There are multiple advantages to using the JDBC catalog. One is that it can be easy to
get started. If you have a JDBC-compliant data store, you already have the necessary
infrastructure to start using the JDBC catalog. Common examples of such databases
include MySQL and PostgreSQL. Even if you don’t have one lying around, cloud
providers make it easy to spin one up with, for instance, Amazon Relational Database
Service (Amazon RDS) and Azure Database for MySQL/PostgreSQL. Another advan-
tage is that these databases (especially the cloud-hosted ones) make it easy to have
high availability built into the setup, ensuring that your data remains accessible and
safe even if the primary database instance goes down. A third advantage is that it’s
cloud agnostic, so you can use the same catalog if you are multicloud today, will be
multicloud tomorrow, or want to minimize cloud vendor lock-in.

There are two main disadvantages of the JDBC catalog. One is that it doesn’t support
multitable transactions. The second is that it requires all your engines and tools
to either package a JDBC driver with its deployment or be able to pull one in
dynamically, increasing the dependencies on your deployment.

JDBC catalog use cases

You might choose the JDBC catalog if you already have a JDBC-compliant database
running or plan to use a database service offered by a cloud provider, such as
Amazon RDS. Its also a good choice if your environment requires high availability
and/or you want to be cloud agnostic.

Configuring Spark to use the JDBC catalog

The following code snippet shows how you can launch a Spark SQL shell where you
can use my_catalogl to write and read Iceberg tables using the JDBC catalog as your
Iceberg catalog:

Catalog Comparison | 107

spark-sql --packages org.apache.iceberg:iceberg-spark-runtime-x.x_x.xx:x.x.x \

--conf spark.sql.catalog.my_catalogl=org.apache.iceberg.spark.SparkCatalog \

--conf spark.sql.catalog.my_catalogl.warehouse=<protocol>://<path> \

--conf spark.sql.catalog.my_catalogl.catalog-impl=org.apache.ice-
berg.jdbc.JdbcCatalog \

--conf spark.sql.catalog.my_catalogl.uri=jdbc:<protocol>://<host>:<port>/
<database> \

--conf spark.sql.catalog.my_catalogl.jdbc.user=<username> \

--conf spark.sql.catalog.my_catalogl.jdbc.password=<password>

Other Catalogs

Note that there are additional catalog implementations besides the ones covered here
(e.g., in-memory, DynamoDB, Snowflake). However, here we chose to focus on the
most common catalogs, since there can be a long tail of options because almost
anything can act as an Iceberg catalog, as long as it provides the abilities mentioned in
“Requirements of an Iceberg Catalog” on page 99.

Catalog Migration

One nice thing about the vast majority of an Iceberg table residing in data lake
storage is that it makes migrating from one catalog instance to another or one
catalog type to another a very lightweight operation—you're just changing where
the mapping of the table path to the current metadata file is. However, while the
operation itself is lightweight, as with all migrations a proper plan should be put in
place to handle the surrounding complications, such as write jobs and the different
tools and applications in your environment.

Being able to migrate catalogs easily mitigates vendor and catalog system lock-in risk
and future-proofs your data. If a better or more cost-effective solution comes along,
you can switch without much hassle.

There are a few situations where you might want to consider migrating catalogs.
One is if you've been experimenting with and/or evaluating Iceberg with one catalog,
such as Hadoop, to get started quickly, but you want to use a different catalog for
production usage. A second situation is if you want to take advantage of additional
capabilities that your current catalog doesn't have. A third situation is if you're chang-
ing the location of your environment. An example of this is if you're on premises and
using the Hive Metastore from your old Hadoop deployment and youre migrating to
AWS and want to use AWS Glue because it’s a hosted offering. Note that this third
situation requires additional consideration since you’ll be migrating the data as well.

A nice thing about the migration being lightweight is that you can continue using
your current catalog, register a set of tables in the new catalog, keep the entry in your
current catalog, and do testing on the new catalog. Just note in this situation that the
new catalog’s entry will be stale, with any changes made to the table using the current

108 | Chapter5:Iceberg Catalogs

catalog. You shouldn’t make any changes to the table using the new catalog, as all
existing usage of the current catalog won't see those changes.

There are two standard ways to migrate catalogs. We'll go through those next.

Using the Apache Iceberg Catalog Migration CLI

The Iceberg catalog migration tool, which is a CLI, is an open source tool within Project
Nessie. To maintain a clear emphasis that the Iceberg project focuses on the table format
specification and engine integration, the Apache Iceberg community opted to maintain
a distinct codebase for the tool, separate from the Iceberg repository. It enables bulk
migration of Apache Iceberg tables from one catalog to another without the need to copy
data. The tool supports all commonly used catalogs in Apache Iceberg, such as AWS
Glue, Nessie, Dremio Arctic, Hadoop, Hive, REST, JDBC, and any custom catalogs.

The iceberg-catalog-migrator currently offers two main functions: migration and
registration. Crucially, neither of these functions creates data copies. Also, both of
them transfer the table’s entire history, allowing for functionalities such as time travel
in the new catalog after the migration or registration. Following is a summary of the
migrate and register commands:

migrate
The migrate command facilitates the bulk migration of Iceberg tables from
the original (source) catalog to a new (target) catalog. Once the migration is
successfully completed, the table entries will no longer exist in the source catalog;
they are effectively moved to the target catalog.

register

The register command lets you include (or register) Iceberg tables from the source
catalog into the target catalog. Unlike the migrate operation, register does not
involve removing tables from the source catalog. Therefore, following a successful
registration, the tables will exist in both catalogs. This functionality is particularly
useful for such tasks as conducting premigration validation testing or exploring new
catalogs that offer unique features, all while ensuring that the original tables remain
intact. When using the register command, you need to ensure that you do not
write to the same table from multiple catalogs. Doing so can lead to missing updates,
data loss, and potential table corruption. It's recommended to use the migrate
command for this task, which automatically deletes the table from the source catalog
after registration, avoiding these issues. Alternatively, avoid performing operations
on tables from the source catalog after registration.

Catalog Migration | 109

https://oreil.ly/iCtJP

Note that it's not advisable to use the CLI tool during ongoing commits to tables in
the source catalog. This is to prevent missing updates, data loss, and potential table
corruption in the target catalog. During migration, the tool captures a specific state of
the table (a metadata file) and uses that state for registering into the target catalog. If
there are ongoing commits to the source catalog table, the new commits won’t reflect
on the target catalog, risking the integrity of your data. Adopting a batch-wise migra-
tion approach using a regex expression (e.g., all tables in namespacel or all tables in
namespacel with names starting with the letter a) is generally recommended. This
approach can be part of regular maintenance and downtime processes, allowing users
to avoid writing data during this phase and pause any automated running jobs. Note
that these jobs will need to be repointed to the new catalog before they start running
again. An alternative can be to have a middle-layer shim that initially points to the
existing catalog, configure your jobs to point at that shim, validate there are no issues,
and then perform the migration. When the migration is complete, your jobs don’t
need to change; you just need to point the shim at the new catalog instead.

Here’s an example usage of the CLI tool:

java -jar iceberg-catalog-migrator-cli-0.2.0.jar migrate \
--source-catalog-type GLUE \

--source-catalog-properties warehouse=s3a://bucket/gluecatalog/,io-
impl=org.apache.iceberg.aws.s3.S3FilelO \

--source-catalog-hadoop-conf
fs.s3a.secret.key=SAWS_SECRET_ACCESS_KEY,fs.s3a.access.key=$AWS_ACCESS_KEY_ID \
--target-catalog-type NESSIE \

--target-catalog-properties uri=http://localhost:19120/api/vl,ref=main,ware-
house=s3a://bucket/nessie/,i0-impl=org.apache.iceberg.aws.s3.S3Filel0 \
--identifiers dbil.nominees

When executed, this command will migrate the table dbl.nominees (specified by
the - -identifiers flag) from an AWS Glue catalog (specified by - -source-catalog-
type) for the AWS account corresponding to the AWS credentials (specified by
the --source-catalog-hadoop-conf settings) to a Nessie catalog (specified by
--target-catalog-type) running on localhost on port 19120 (specified by uri
within - -target-catalog-properties).

Using an Engine

The second standard way to migrate catalogs is to use an engine such as Apache
Spark. When using Spark, there are a set of procedures that can be used from Spark
SQL. You'll need to configure both the source catalog and the target catalog so that
the Spark session can use these procedures.

110 | Chapter5:Iceberg Catalogs

For example, if you wanted to have a Hadoop catalog as your source catalog and an
AWS Glue catalog as your target catalog, you could configure Spark SQL like this:

spark-sql --packages "org.apache.iceberg:iceberg-spark-
runtime-x.x_X.Xx:X.X.X,software.amazon.awssdk:bundle:x.xx.xxx,software.ama-
zon.awssdk:url-connection-client:x.xx.xxx" \

--conf
spark.sql.extensions=org.apache.iceberg.spark.extensions.Iceberg
SparkSessionExtensions \

--conf
spark.sql.catalog.source_catalogl=org.apache.iceberg.spark.SparkCatalog \

--conf spark.sql.catalog.source_catalogl.type=hadoop \

--conf spark.sql.catalog.source_catalogl.warehouse=<protocol>://<path>
--conf spark.sql.catalog.target_catalogl=org.apache.iceberg.spark.SparkCatalog \
--conf spark.sql.catalog.target_catalogl.warehouse=s3://<path> \

--conf spark.sql.catalog.target_catalogl.catalog-impl=org.apache.ice-
berg.aws.glue.GlueCatalog \

--conf spark.sql.catalog.target_catalogl.io-impl=org.apache.ice-
berg.aws.s3.S3FilelIO0 \

--conf spark.hadoop.fs.s3a.access.key=SAWS_ACCESS_KEY \

--conf spark.hadoop.fs.s3a.secret.key=$AWS_SECRET_ACCESS_KEY

When executed, this command will launch a Spark SQL shell configured
to allow for migrating tables between a Hadoop -catalog (specified by
--conf spark.sql.catalog.source_catalogl.type) at the input location (speci-
fied by --conf spark.sql.catalog.source_catalogl.warehouse) and an AWS
Glue catalog (specified by --conf spark.sql.catalog.target_catalogl.catalog-
impl=org.apache.iceberg.aws.glue.GlueCatalog) for the AWS account corre-
sponding to the AWS credentials (specified by --conf spark.hadoop.fs.s3a.
access.key and --conf spark.hadoop.fs.s3a.secret.key).

Note that executing this command will just launch a Spark SQL shell that has the
two catalogs configured (source_catalogl and target_catalogl), which allows
commands to use these catalogs, rather than doing any immediate migration of
tables. There are two main procedures to consider when migrating tables between
catalogs. We'll go through these procedures next.

register_table()

The register_table() Spark SQL procedure creates a lightweight copy of the source
table using the source table’s datafiles. Any changes made to the target catalog’s table
will be done in the source catalog table’s directories, but as long as the changes don’t
physically delete any of the datafiles (e.g., expire_snapshot()), the changes made
to the tables registered in the target catalog won't be seen by the source catalog’s
table. That said, making changes to the target catalog’s tables in this situation is
not recommended.

Catalog Migration | 111

This method can be useful for testing migration where no changes are required to
the target catalog’s table for validation. This method can also be useful if you want to
migrate catalogs, but you want to keep the table’s file location on data lake storage the
same before and after migration.

Note that this method transfers the entire history of the table, so history operations
such as time travel and viewing the history of the table via system tables are doable
after using this procedure.

Table 5-1 details the arguments needed to run the register_table() procedure in
Spark SQL.

Table 5-1. Arguments for the register_table() procedure

Argumentname Required? Type Description

table Yes String Target table name to be registered
metadata_file VYes String Metadata file that is to be registered as the current metadata file for the new
target table

Table 5-2 details the output fields returned when the procedure is executed.

Table 5-2. Output for the register_table() procedure

Output name Type Description

current_snapshot_id Long Current snapshot ID of the newly registered Iceberg table

total_records_count Long Total record count of the newly registered Iceberg table
total_data_files_count Long Total datafile count of the newly registered Iceberg table

Following is an example usage of the register_table procedure, based on the Spark
SQL shell configuration in the previous section:

CALL target_catalog.system.register_table(
'target_catalog.dbl.tablel', '/path/to/source_catalog_warehouse/db1/tablel/
metadata/xxx.json'

)

snapshot()

Similar to register_table(), the snapshot() Spark SQL procedure creates a light-
weight copy of the source table, using the source table’s datafiles. However, unlike
register_table(), any changes made to the target catalog’s table will be done in
the target table’s table location, meaning any changes made to the target table won’t
interfere with the source table. That said, any changes made to the source table
won't be visible to the users of the target table, and vice versa.

12 | Chapter5:Iceberg Catalogs

This method can be useful for testing migration where changes are required to be made
to the target table for validation purposes, but you don’t want anything using the source
table to see these changes. Another consequence of the target catalog’s table not owning
the datafiles is that it is not allowed to run expire_snapshots() on the target table, since
that would entail physically deleting datafiles owned by the source catalog’s table. It can
also be useful if you want a lightweight migration to the new catalog but want to change
the table’s file location, since, over time and with changes, more and more of the table’s
metadata and datafiles will be in the target catalog table’s location. Further, if you want,
you can leverage rewrite_data_files() at a later date postmigration to make the file
migration happen more quickly (e.g., if migrating from on prem to the cloud or from one
cloud to another).

Note that this method transfers the entire history of the table, so history operations
such as time travel and viewing the history of the table via system tables are doable
after using this procedure.

Table 5-3 details the arguments needed to run the snapshot() procedure in Spark
SQL.

Table 5-3. Parameters for the snapshot() procedure

Argument name Required? Type Description
source_table Yes String Name of the table to snapshot
table Yes String Name of the new Iceberg table to create
location String Table location for the new table (delegated to the catalog
by default)
properties map<string, Properties to add to the newly created table
string>

Table 5-4 details the output fields returned when the procedure is executed.

Table 5-4. Output for the snapshot() procedure

Output name Type Description

imported_files_count Long Number of files added to the new table

Following is an example usage of the snapshot() procedure, based on the Spark SQL
shell configuration in the preceding section:

CALL target_catalog.system.snapshot(
'source_catalog.dbl.tablel’,
'target_catalog.dbl.tablel'

)

Catalog Migration | 113

Conclusion

In this chapter, we walked through a detailed exploration of Iceberg catalogs, taking
a close look at their pivotal role in maintaining consistency among multiple readers
and writers and their use in discovering available tables in a given environment.

We examined the fundamental requirements of a catalog, alongside additional neces-
sities for deploying a catalog in a production setting. We also thoroughly compared
various catalog implementations, detailing their pros and cons and explaining how
to configure Spark for each of them. In addition, we discussed catalog migration,
including the scenarios where one might want to consider migrating catalogs, and the
two primary methods for how to go about doing so.

In Chapter 6, we'll go hands-on with Apache Iceberg in a variety of different tools.

114 | Chapter5: Iceberg Catalogs

PART II
Hands-on with Apache Iceberg

This part of the book will delve into the practical aspects of using Apache Iceberg
with some widely used compute engines and standalone APIs, including Apache
Spark, Dremio’s SQL Engine, AWS Glue, Apache Flink, and Pylceberg. For a bonus
chapter on the Iceberg Java/Python APIs, visit this supplemental repository. The
primary focus is to provide in-depth explanations and code examples to demonstrate
how Apache Iceberg works with various compute engines so that you can apply and
build on the theoretical concepts discussed in the previous chapters.

Visit the book’s GitHub repository to learn how to create a data lakehouse environ-
ment on your computer with Docker and to get hands-on with tools such as Apache
Spark, Apache Flink, and Dremio.

https://oreil.ly/apache-ice_more-content
https://oreil.ly/supp-guide-apache-iceberg-ch6

CHAPTER 6
Apache Spark

Apache Spark stands out as a highly versatile distributed compute engine paired with
Apache Iceberg due to its support for an extensive range of features. Leveraging
Spark and Iceberg allows you to take advantage of the computational benefits of
Iceberg’s efficient data organization and management capabilities. In this chapter, we
will explore the necessary steps to get started with Apache Iceberg and Spark as well
as dive into some critical capabilities. By the end of this chapter, you will be able
to configure Apache Iceberg; perform various Data Definition Language (DDL) oper-
ations (CREATE, ALTER), queries (SELECT), and Data Manipulation Language (DML)
operations (INSERT, UPDATE, DELETE, MERGE); and manage Iceberg tables with different
processing engines.

Configuration

We'll start by discussing how to configure Apache Iceberg tables and catalogs using
Spark as the compute engine. The idea is to familiarize yourself with the basic
configuration parameters needed to work with Iceberg and Spark seamlessly.

Configuring Apache Iceberg and Spark

To begin working with Apache Iceberg tables using Apache Spark, it's necessary to
configure them to work together. There are a couple of ways to define these configu-
rations. First you will see how to set these configs via feature flags for use in Spark
Shell or Spark SQL, and then you will see how to do the same in a Python application.

117

Configuring via the CLI

As a first step, you'll need to specify the required packages to be installed and used
with the Spark session. To do so, Spark provides the - - packages option, which allows
Spark to easily download the specified Maven-based packages and its dependencies to
add them to the classpath of your application.

To use Iceberg with Spark, you use the --packages option and specify the
iceberg-spark-runtime package. The generic format for specifying the package is
groupld:artifactld:version. The iceberg-spark-runtime package includes the Iceberg
classes that Spark needs to interact with Iceberg tables and metadata. By using the
- -packages option, youre ensuring that these necessary classes are included in the
Spark classpath when your Spark shell or application runs.

Here is the command to start a Spark shell with Apache Iceberg:
spark-shell --packages org.apache.iceberg:iceberg-spark-runtime-3.3_2.12:1.3.0

This command tells Spark to download the iceberg-spark-runtime package from
the org.apache.iceberg group where the Iceberg version is 1.3.0, the Spark version
is 3.3, and the Scala version is 2.12. One critical thing to note here is that the
package version and the Scala version must be compatible with your Apache Spark
version. You can check the compatible versions in the official Iceberg documentation.
Otherwise, it may lead to compatibility issues.

Similarly, if you want to make these configurations in your Spark SQL session, you
can include the package name, as shown in the following command:

spark-sql --packages org.apache.iceberg:iceberg-spark-runtime-3.3_2.12:1.3.0

An alternative to using the --package option in the CLI way of configuring is to
add the required JAR files to Spark’s jars folder in your installation. The JAR option
can benefit local development and testing environments and eliminates the need to
download the libraries from Maven repositories, whereas --package provides you
flexibility in version management.

This JAR contains the Iceberg classes and extensions needed for Spark to interpret
and manipulate Iceberg tables. Including the JAR file can be done via the command
line when starting a Spark shell or Spark submit:

./bin/spark-shell --jars /path/to/iceberg-spark-runtime.jar

The two approaches allow you to configure Iceberg and Spark using the CLI. How-
ever, to make these configurations in your Python or Scala application, you must
include the package in your code when creating a Spark session. Let’s go through how
to do that in a PySpark application.

118 | Chapter 6: Apache Spark

https://oreil.ly/cVP-F
https://oreil.ly/JBlYq

Configuring via Python code (PySpark)

Before you start a PySpark session with Apache Iceberg, you will need to have the
following installed:

e Java (v8 orvl1l)
o PySpark

o Apache Spark (the version depends on the Iceberg version)

To start a PySpark Session that includes all the Iceberg-related libraries, you will need
to use the SparkSession.builder object in PySpark. This allows you to specify the
required configuration options for your Spark session. Here is a snippet that shows
how to achieve this:

from import *
from import SparkConf

Create a Spark Configuration
conf = SparkConf()

Set Configurations
conf.set("spark.jars.packages", "org.apache.iceberg:iceberg-spark-
runtime-3.3_2.12:1.2.0")

Create Spark Session
spark = SparkSession.builder.config(conf=conf).getOrCreate()

Spark Session Object can then be used to run queries with
the spark.sql("SELECT * FROM table") function

We first created a SparkConf object, which configures the properties for the Spark
context in our application. We can specify various parameters here in key-value pairs.
For this example, we set the spark. jars.packages config with our required package,
org.apache.iceberg:iceberg-spark-runtime-3.3_2.12:1.2.0. Similar to the CLI
method, this configuration will add external libraries directly by their Maven coordi-
nates to the classpath. Finally, we created a SparkSession with the configuration
object (conf) that we set up.

Configuring the Catalogs

The next important component in the configuration process is the Apache Iceberg
catalog. Apache Iceberg supports a wide variety of catalogs for metadata manage-
ment. We discussed the requirements for a catalog and its role in the Apache Iceberg
table format in detail in Chapter 5. In a nutshell, a catalog is a logical namespace
that holds metadata information about the Iceberg tables and provides a unified
view of the data to various compute engines, bringing in reliability and consistency

Configuration | 119

guarantees for the transactions. Therefore, a catalog is one of the first things you
would configure to work with Iceberg tables.

Apache Spark provides an API to add table catalogs, which are utilized for loading,
creating, and administering Iceberg tables. Configuring a catalog in Spark involves
defining and naming it in the Spark session configuration, either programmatically in
your PySpark code or in the Spark shell. This is done by setting the Spark property
spark.sql.catalog.<catalog-name> with an implementation class for its value. The
configuration signifies that a catalog of the given name should be created and man-
aged using a defined implementation class. Here is an example of how to do this:

spark.sql.catalog.my_catalog =org.apache.iceberg.spark.SparkCatalog

Here we defined a catalog named my_catalog that will be implemented using Ice-
berg’s implementation of the SparkCatalog class instead of Spark’s default implemen-
tation. The implementation class is essentially the backbone of every catalog used by
Spark, providing the logic and functionality that Spark will use to interact with your
independent Apache Iceberg catalog (Nessie, AWS Glue) as a catalog in the Spark
session. Before moving on to other configuration parameters, let’s discuss the two
built-in catalog implementation classes for Spark provided by Apache Iceberg.

Using org.apache.iceberg.spark.SparkCatalog

The first implementation class supports using either a Hive Metastore or a Hadoop
(filesystem) catalog by default. This is the type of catalog we used in the previous
example. When configured to use a Hive Metastore (by setting the catalog type to
hive), SparkCatalog uses Hive's Metastore to store table metadata, allowing you to
leverage Hive’s metadata management features. Alternatively, if you set the catalog
type to hadoop, SparkCatalog will use a directory-based catalog in Hadoop or any
other filesystem to store table metadata. Here is an example of how to configure a
SparkCatalog with Hive:

spark.sql.catalog.hive_catalog = org.apache.iceberg.spark.SparkCatalog
spark.sql.catalog.hive_catalog.type = hive

spark.sql.catalog.hive_catalog.uri = thrift://metastore-host:port

In this example, we configured a SparkCatalog called hive_catalog. The type
parameter is set to hive to leverage the Hive Metastore in this particular case.
Another parameter called uri is set to inform Spark to use the specified Hive Met-
astore URI for interacting with the Iceberg tables in the hive_catalog. Table 6-1
discusses details about the available catalog properties.

120 | Chapter 6: Apache Spark

Table 6-1. Catalog properties

Property Values Description

spark.sql.cat Hive, Hadoop, Specifies the underlying Iceberg catalog implementation;
alog.catalog- REST remains unset if a custom catalog is used
name.type

spark.sql.cat Custom Iceberg catalog implementation class; must be
alog.catalog- defined if the type property is not set
name.catalog-impl

spark.sql.cata Custom FileIO implementation
log.catalog-name.

io-impl

spark.sql.cata default Default namespace for the catalog

log.catalog-name.
default-namespace

spark.sql.cata thrift:// Hive Metastore URI, REST URI, or Nessie/Arctic server (custom catalog)
log.catalog-name.uri host:port

spark.sql.cat /path/to/ Warehouse location for the catalog to store data

alog.catalog- warehouse

name.warehouse

Using org.apache.iceberg.spark.SparkSessionCatalog

The SparkSessionCatalog is a more specialized implementation that wraps around
Spark’s built-in session catalog, adding support for Iceberg tables. This could benefit
scenarios when you want to use Iceberg tables seamlessly alongside non-Iceberg
tables in your Spark session. Here, all the non-Iceberg tables are managed by the
built-in Spark catalog, while the tables specific to Iceberg are managed separately
through the SparkSessionCatalog class. Here is an example of this configuration:

spark.sql.catalog.hive_spark_catalog = org.apache.iceberg.spark.SparkSessionCa-
talog

spark.sql.catalog.hive_spark_catalog.type = hive

spark.sql.catalog.hive_spark_catalog.uri = thrift://localhost:9083

In the preceding code, we configured a SparkSessionCatalog named hive_spark_
catalog to use a Hive Metastore (located at thrift:localhost:9083) for the
metadata storage.

Configuration | 121

Using a custom catalog

There could be scenarios when you would like to go beyond Iceberg’s built-in catalog
implementations. For example, you might want to integrate with an existing platform
in your organization, such as AWS Glue, or take advantage of the data-as-code para-
digms with modern metastores such as Project Nessie. For such cases, Spark allows
you to load a custom Iceberg catalog implementation. The custom catalog implemen-
tation needs to implement the Catalog interface in Iceberg and is specified using the
catalog-impl property. The following example shows how to load a custom catalog:

spark.sql.catalog.custom_catalog = org.apache.iceberg.spark.SparkCatalog
spark.sql.catalog.custom_catalog.catalog-impl = com.my.custom.CatalogImpl

spark.sql.catalog.custom_catalog.my-additional-catalog-config = my-value

In this example, custom_catalog is a catalog that leverages Iceberg’s SparkCatalog,
but with a custom implementation defined by com.my.custom.CatalogImpl. The
my-additional-catalog-config can be any additional configuration required by
your CatalogImpl.

In the previous two sections we explored how to configure Apache Spark with
Apache Iceberg and how to configure catalogs such as Hive Metastore and Hadoop to

work with Iceberg tables. Now let’s configure these components and get started with
our hands-on exercises.

Starting Spark with All the Configurations (AWS Glue Example)

To follow along and execute the examples presented in this chapter, you can clone
this repository and follow these instructions:

o In the Chapter 6 folder of the repository, read the developer_env.md file for
directions on how to set up your developer environment.

o Once it is set up, copy any notebook files you'll need for future exercises into
the /notebooks folder that will exist where your environment is established.

(If youd rather use a local setup without the need for cloud infrastructure, refer to the
book’s GitHub repository for information on catalog setup and configurations.)

122 | Chapter 6: Apache Spark

https://aws.amazon.com/glue
https://projectnessie.org
https://oreil.ly/supp-guide-apache-iceberg
https://oreil.ly/supp-guide-apache-iceberg-ch6

You will first need to set the AWS environment variables to interact with the Glue
catalog:

%env AWS_REGION= region
%env AWS_ACCESS_KEY_ID= key
%env AWS_SECRET_ACCESS_KEY= secret

Make sure to replace these placeholders with the actual values:

import pyspark
from pyspark.sql import SparkSession
import os

conf = (
pyspark.SparkConf()
.setAppName('app_name")
.set('spark.jars.packages', 'org.apache.iceberg:iceberg-
spark-runtime-3.3 2.12:1.2.0,software.amazon.awssdk:bundle:2.17.178,software.ama
zon.awssdk:url-connection-client:2.17.178")

.set('spark.sql.extensions', 'org.apache.iceberg.spark.extensions.Ice
bergSparkSessionExtensions')
.set('spark.sql.catalog.glue', 'org.apache.iceberg.spark.SparkCatalog')

.set('spark.sql.catalog.glue.catalog-impl', 'org.apache.ice
berg.aws.glue.GlueCatalog')

.set('spark.sql.catalog.glue.warehouse', 's3://my-bucket/warehouse/')

.set('spark.sql.catalog.glue.io-impl', 'org.apache.iceberg.aws.s3.S3Fil
el0")
)

spark = SparkSession.builder.config(conf=conf).getOrCreate()

Next, you will pass the necessary packages for Iceberg and Spark along with an
AWS SDK package that will help you interact with the AWS services (S3, Glue)
we plan to use. Define a catalog called glue that leverages Iceberg’s SparkCatalog
as its foundation, but with a custom implementation defined by org.apache.
iceberg.aws.glue.GlueCatalog. Then set the catalog warehouse location to s3://
my-bucket/warehouse/. This is where the compute engine will write the data and
metadata files.

Finally, the org.apache.iceberg.aws.s3.53FileIO value set in the custom FileIO
implementation property indicates the implementation provided by Iceberg for read-
ing and writing data to AWS S3. Upon executing this code, you will have your Spark
app up and running with all the configurations:

Configuration | 123

| | modules Il artifacts |
| conf | number| search|dwnlded|evicted|| number|dwnlded|

: retrieving :: org.apache.spark#spark-submit-parent-18734b47-4777-4ae3-
ble0-1caa56050c4a
confs: [default]
0 artifacts copied, 34 already retrieved (0kB/234ms)

23/08/22 23:48:58 WARN NativeCodelLoader: Unable to load native-hadoop library
for your platform... using builtin-java classes where applicable

Setting default log level to "WARN".
To adjust logging level use sc.setLoglLevel(newLevel). For SparkR, use
setLoglLevel(newLevel).

23/08/22 23:49:07 WARN Utils: Service 'SparkUI' could not bind on port 4040.
Attempting port 4041.
Spark Running

Data Definition Language Operations

This section will familiarize you with the various DDL operations available within
Apache Iceberg using Spark. In Iceberg, DDL operations are intuitive and well
aligned with standard SQL. Apache Spark allows you to perform these operations
using the SQL API or DataFrame API (DataFrameWriterV2) and provides similar
results irrespective of the API used. Please note that the DataFrame API does not
support all the DDL operations. We will present examples of how to run these

operations with both the SQL API and the DataFrame API (wherever applicable).

CREATE TABLE

The first step is to create an Iceberg table using the CREATE TABLE command. Follow-

ing are examples of how to do so using the Spark SQL API and the DataFrame API.
Spark SQL:

nwnn

spark.sql(
CREATE TABLE glue.test.employee (
id INT,
role STRING,
department STRING,
salary FLOAT,
region STRING)
USING 1iceberg
"

124

| Chapter 6: Apache Spark

Here, glue refers to the catalog instance, test refers to the database/namespace name
(which must already exist in your Glue catalog), and employee is the new table. The
table will be created with five columns. The USING iceberg clause in the SQL API
indicates that youre leveraging Iceberg as your table format.

DataFrame API:

from import StructType, StructField, StringType, IntegerType

Define the schema

schema = StructType([
StructField("id", IntegerType(), True),
StructField("role", StringType(), True),
StructField("department", StringType(), True),

D

Create an empty DataFrame with the schema
df = spark.createDataFrame([], schema)

Write the DataFrame to the catalog as a new table
df .writeTo("glue.test.employee").create()

Create a table with partitions

Partitioning is a way to segregate your data into smaller, manageable units, enabling
you to optimize data operations by leaving out irrelevant data. When a table is
partitioned, data is physically divided and stored across different directories based
on the partition column values. For example, if you partition a product data table
by region, the data for each region will be stored separately, and when you query
data specific to a particular region, only the relevant data is read and returned. We
discussed partitioning in detail in Chapter 4. Here is how to create a partitioned table
in Iceberg using Spark.

Spark SQL:

nwnn

spark.sql(
CREATE TABLE glue.test.emp_partitioned (
id INT,
role STRING,
department STRING)
USING iceberg
PARTITIONED BY (department)
"

Here, the PARTITIONED BY (department) clause instructs Iceberg to partition the
data based on the department column. This would result in data being stored in
separate partitions based on the distinct values present in the department column.

Data Definition Language Operations | 125

DataFrame API:

from import StructType, StructField, StringType, IntegerType
from import col

Define the schema

schema = StructType([
StructField("id", IntegerType(), True),
StructField("role", StringType(), True),
StructField("department", StringType(), True)

D

Create an empty DataFrame with the schema
df = spark.createDataFrame([], schema)

Write the DataFrame to the catalog as a new table
df .writeTo("glue.test.emp_partitioned").partitionedBy(col("department")).create()

Apache Iceberg also supports hidden partitioning, which means you don’t have to add
or manage explicit partition columns, unlike in table formats such as Hive. Iceberg
takes a column and internally transforms it into a partition value while keeping track
of the relationship. This happens behind the scenes, so users won't have to deal with it
when querying data. You can read more about hidden partitioning in Chapter 4.

The PARTITIONED BY clause supports certain transform expressions to generate hid-
den partitions. Here is an example using Spark SQL.:

spark.sql(
CREATE TABLE glue.test.emp_partitioned_month (
id INT,
role STRING,
department STRING,
join_date DATE

)
USING iceberg
PARTITIONED BY (months(join_date))

"

This statement will create an Iceberg table called emp_partitioned_month that is
partitioned by month of join_date. In this case, Iceberg does the transformation of
join_date to months(ts) internally and tracks the relationship between these two,
avoiding the need to create an additional partition column. This way, users don’t
have to worry about the physical layout of the table. Other supported transformations
include the following:

year(ts): Partition by year.

months(ts): Partition by month.

days(ts) or date(ts): dateint partitioning.

o hours(ts) or date_hour(ts): dateint and hour partitioning.

126 | Chapter 6: Apache Spark

o bucket(N, col): Partition by hash value mod N (Number) buckets.
o truncate(L, col): Partition by value truncated to L (Length).

Use the CREATE TABLE. . .AS SELECT statement

The CREATE TABLE..AS SELECT (CTAS) statement allows you to create and populate
a new table with records simultaneously. This can be particularly useful for scenarios
where you want to create a new table based on the results of complex queries
or transformations applied to existing tables. One important thing to note when
running CTAS in the context of Apache Iceberg is that it works as an atomic opera-
tion only when using the SparkCatalog class. If you use the SparkSessionCatalog
class, CTAS is supported but is not atomic, which may cause inconsistencies when
concurrent writes are occurring. Here is how to execute a CTAS statement in Apache
Iceberg using Spark.

Spark SQL:

wun

spark.sql(
CREATE TABLE glue.test.employee_ctas
USING iceberg
AS SELECT * FROM glue.test.sample

"

In this example, a new table, employee_ctas, is created within the glue.test catalog
and is populated with the data from an existing table called sample.

DataFrame API:

Read an existing table into a DataFrame
df_ctas = spark.read.table("glue.test.sample")

Use the DataFrame's writeTo method with the create operation to do a CTAS
df_ctas.writeTo("glue.test.employee_ctas").create()

Note that the original table’s partition specification and other properties are not
automatically inherited when using CTAS. You can manually set these properties by
using the PARTITIONED BY clause and the TBLPROPERTIES command in your CTAS
statement. Here is an example.

Spark SQL:

wnn

spark.sql(
CREATE TABLE glue.test.emp_ctas_partition
USING iceberg
PARTITIONED BY (category)
TBLPROPERTIES (write.format.default='avro')
AS SELECT *
FROM glue.test.sample

"

Data Definition Language Operations | 127

DataFrame API:

from import col

df_new = spark.read.table("glue.test.sample")
df_new.writeTo("glue.test.emp_ctas_partition") \
.partitionedBy(col("category")) \
.create()

ALTER TABLE

As your business requirements change, the existing table structure may need to
evolve or change. These changes could span from simply renaming a table’s column
and adding or dropping columns to more complex modifications such as altering
table properties and changing schema or column types. Apache Iceberg provides
support for a variety of ALTER TABLE operations. Note that these operations are only
possible using Spark SQL, not the DataFrame API.

Let’s look at a few of these operations.

Rename a table

There might be situations where you would want to adjust the naming scheme of an
Iceberg table for better organization of your data assets or when the table’s current
name no longer accurately depicts its data contents. In such cases, you can use the
ALTER TABLE...RENAME TO command to easily rename a table:

spark.sql(
ALTER TABLE glue.test.employee RENAME TO glue.test.emp_renamed
niy

In this example, we've renamed the table from employee to emp_renamed within the
catalog glue.test (this does not change the storage path, just the namespace in the
catalog).

Set table properties

You can set table-specific properties in Iceberg to customize and manage the behavior
of individual tables, such as changing the write distribution strategy for performance
improvements and enabling specific features. This can be achieved using the SET
TBLPROPERTIES command:

spark.sql(
ALTER TABLE glue.test.employee SET TBLPROPERTIES ('write.wap.enabled'='true')
nn ll)

This command sets the write.wap.enabled property of the employee table to true,
which enables write-audit-publish writes (a pattern of staging writes for auditing
before publishing).

128 | Chapter 6: Apache Spark

Add a column

To add more fields to your existing Iceberg table, you can use the ALTER TABLE. ..ADD
COLUMN command:

nwnn

spark.sql(
ALTER TABLE glue.test.employee ADD COLUMN manager STRING
iy

Here, we added another column called manager, which is of type string, to our
existing table employee using the ADD COLUMN clause.

You can add multiple columns at the same time using separated commas:

spark.sql("""
ALTER TABLE glue.test.employee ADD COLUMN details STRING, manager_id INT
iy
To add columns to a specific position, you can leverage the FIRST and AFTER clauses:
spark.sql("""
ALTER TABLE glue.test.employee ADD COLUMN new_column bigint AFTER department
oy

This query will add a new column called new_column to a specific position, in this
case, after the department column.

Similarly, the following query will add a new column, first_column, to the very first
position of the table:

wnn

spark.sql(
ALTER TABLE glue.test.employee ADD COLUMN first_column bigint FIRST
iy

Rename a column

Renaming a column is another operation that you might require to adhere to a new
naming convention or to accommodate changing data needs. Here is an example of
how this command can be applied:

spark.sql(
ALTER TABLE glue.test.employee RENAME COLUMN role TO title
wnry
In this query, we altered the employee table within the glue. test catalog by renam-
ing role to title to better reflect the relevant column name.

Modify a column

To modify the attributes of a column, such as its type or nullability, or to set com-
ments and reordering fields, Iceberg provides the ALTER TABLE...ALTER COLUMN
command:

Data Definition Language Operations | 129

spark.sql(
ALTER TABLE glue.test.employee ALTER COLUMN id TYPE BIGINT
nn II)
This command changes the id column’s data type to BIGINT from INT in the
employee table.

Iceberg allows you to flexibly modify column types while ensuring that the updates
are safe. Safe updates are essential so that there is no data loss or misinterpretation.
Some of the recommended safe updates include the following:

 Changing an integer (int) to a bigint
+ Changing a float to a double

o Transforming decimal(P, S) to decimal(P2, S) given that scale S remains
unchanged

Iceberg also allows you to reorder columns using the FIRST and AFTER clauses:
spark.sql("ALTER TABLE glue.test.employee ALTER COLUMN salary FIRST")

The preceding query changes the order of the salary column and brings it to the
very beginning of the table.

Drop a column

To remove unnecessary columns from an Iceberg table, you can use the ALTER
TABLE. ..DROP COLUMN command:

spark.sql(
ALTER TABLE glue.test.employee DROP COLUMN department
iy

The preceding SQL statement removes the column department from the employee
table.

Alter a Table with Iceberg’s Spark SQL Extensions

Apache Iceberg has an extension module in Spark that allows you to run additional
operations that are not part of standard SQL. (You can find a quick reference of
the operations that work with SQL extensions in Table 6-2.) For example, you can
execute various Spark procedures to clean up your metadata in Iceberg using the CALL
clause or change the existing table’s schema with a variety of ALTER statements. To
leverage these SQL commands, you will need to add the Iceberg Spark extensions
property to your Spark CLI or code. Here is an example of how to set this property in
PySpark code:

130 | Chapter 6: Apache Spark

import
from import SparkSession
import

conf = (
pyspark.SparkConf()
.setAppName('app_name')

This property allows us to add any extensions that we want to use
.set('spark.sql.extensions', 'org.apache.iceberg.spark.extensions.Ice
bergSparkSessionExtensions')
spark = SparkSession.builder.config(conf=conf).getOrCreate()
Let’s take a look at some of these SQL extensions and how they can help with the
ALTER statements.

Add/drop/replace a partition

Iceberg allows you to modify the partitioning schema and specify additional partition
fields (enabling partitioning the table on future writes based on an existing table
field), as well as remove or replace existing partitioning fields using the Spark SQL
extension. In the following query, a new partition field, region, is added to the
employee table. Therefore, the data in this table will now be divided based on the
values in the region column, thereby making reads faster for specific regions:

spark.sql(
ALTER TABLE glue.test.employee ADD PARTITION FIELD region
n HII)

The following query will remove the partitioning on the department field in the
employee table. There is, however, no impact on the existing column or schema of the
table due to removal of a partition column:

spark.sql("""
ALTER TABLE glue.test.employee DROP PARTITION FIELD department

")

To replace a partitioning field with a new one, you can use the ALTER
TABLE. ..REPLACE PARTITION FIELD command:

spark.sql("""
ALTER TABLE glue.test.employee REPLACE PARTITION FIELD region WITH department

"

The preceding example replaces the existing region partition field with a new parti-
tion field, department, in the employee table.

Data Definition Language Operations | 131

Adding, dropping, or replacing a partition field is a metadata-only
operation, which means no existing datafiles will be changed. The
current data will remain in the old partition (if applicable), and
new datafiles will be written as per the new partitioning strategy.
However, files rewritten based on table maintenance procedures
will be rewritten based on the current partitioning scheme.

Set the write order

In Iceberg, tables can be configured with a sort order that instructs the compute
engine to sort the data written to the table automatically. To set a sort order for a
table, Iceberg provides the ALTER TABLE..WRITE ORDERED BY command.

Here is an example of ordering the employee table by the id field in ascending order:

wnn

spark.sql(
ALTER TABLE glue.test.employee WRITE ORDERED BY id ASC
nn II)

Set the write distribution

Iceberg gives you control over how the data is distributed among writers. The com-
mand ALTER TABLE.WRITE DISTRIBUTED BY PARTITION is instrumental in managing
data distribution during writes. It ensures that each data partition is handled by a
single writer. This strategy can be beneficial for avoiding uneven data distribution
during the write process. The default implementation of this feature uses hash
distribution.

Here is how to apply this setting to the table:

wun

spark.sql(
ALTER TABLE glue.test.employee WRITE DISTRIBUTED BY PARTITION
iy

Upon executing this query, every partition in the employee table will be handled by
an individual writer.

Set/drop identifier fields

To assign certain fields as identifiers (a field that can make it possible for an engine
to realize two rows refer to the same entity) or to drop existing ones, Iceberg allows
using the ALTER TABLE..SET/DROP IDENTIFIER FIELDS command:

spark.sql("""
ALTER TABLE glue.test.employee SET IDENTIFIER FIELDS id

")

In the preceding example, the id field is set as the identifier for the employee table,
uniquely identifying each record.

132 | Chapter6: Apache Spark

The following query shows how to drop an identifier field from the table:

nwun

spark.sql(
ALTER TABLE glue.test.employee DROP IDENTIFIER FIELDS id
iy

Table 6-2 provides a brief overview of the ALTER operations covered in this section,
outlining situations where SQL extensions could be necessary and where they are not
required.

Table 6-2. Operations supported with and without SQL extension

Operation Without SQL extension With SQL extension

Rename table O
Set table properties O
Add/rename/modify/drop column 2 O

N

Add/drop/replace partition

N

O
Set write order O
Set write distribution O
Set/drop identifier field O

DROP TABLE

The final DDL command in Iceberg is the DROP statement. DROP allows you to remove
an existing table from the catalog. It is important to note that prior to Iceberg v0.14,
executing a DROP TABLE command would remove the table from the catalog along
with its metadata and data contents. However, from v0.14 onward, this behavior has
been modified to only remove the table from the catalog and to keep the table’s
contents.

N

N

The following query will remove the employee table from glue.test, but the table’s
contents will remain intact:

spark.sql("DROP TABLE glue.test.employee")

If you intend to delete the table and its contents, you can use the DROP TABLE..PURGE
command:

spark.sql("DROP TABLE glue.test.employee PURGE")

Reading Data

In this section, we will focus on how to read data from Apache Iceberg tables using
Spark. First you will see how to query and explore data using Spark SQL, and then
we'll discuss how to use DataFrameWriterV2 to do the same.

ReadingData | 133

The Select All Query

The SELECT * command pulls all the records from an existing Iceberg table.
Spark SQL:
spark.sql("SELECT * FROM glue.test.employee").show()

The preceding query selects all the records from the employee table present in the
glue catalog under the namespace test.

DataFrame API:
df_emp = spark.table("glue.test.employee")

Here, the spark.table() method is used to load the Iceberg table employee into a
DataFrame.

The Filter Rows Query

To filter out your data based on specific conditions, you can use conditional queries.
Here is an example.

Spark SQL:

spark.sql("SELECT * FROM glue.test.employee WHERE department = 'Market
ing'").show()

DataFrame API:

df_emp = spark.table("glue.test.employee")

Filter the data
filtered_df = df_emp.filter(df_emp['department'] == 'Marketing')

filtered_df.show()

Aggregation Queries

Aggregation queries allow you to perform calculations over groups of data points.
By leveraging aggregate functions such as SUM, AVG, MAX, MIN, and COUNT, you can
efficiently extract valuable insights and statistics from your dataset. Following are a
few examples.

Count the records

To count the number of rows in an Iceberg table, you can use the COUNT() method in
the Spark SQL and DataFrame APIs. The following queries will give the count of all
records in the glue.test.employee table.

134 | Chapter 6: Apache Spark

Spark SQL:
spark.sql("SELECT COUNT(*) FROM glue.test.employee").show()
DataFrame API:
df_emp = spark.table("glue.test.employee")
print(df_emp.count())
Find the average

The AVG() method calculates the average of all the records in an Iceberg table.
The following queries will return the average of all the salaries (salary) from the
glue.test.employee table.

Spark SQL:
spark.sql("SELECT AVG(salary) FROM glue.test.employee").show()
DataFrame API:
df_emp = spark.table("glue.test.employee")
df_emp.agg({'salary': 'avg'}).show()
Sum the values

SUM() calculates the total sum of the rows in a table. The following queries will return
the sum of all the salaries (salary) from the glue.test.employee table.

Spark SQL:
spark.sql("SELECT SUM(salary) FROM glue.test.employee").show()
DataFrame API:
df_emp = spark.table("glue.test.employee")
df_emp.agg({'salary': 'sum'}).show()
Find the maximum

These queries will group the employees by their category and then find the maximum
salary within each category.

spark.sql("SELECT category, MAX(salary) FROM glue.test.employee GROUP BY cate
gory").show()

DataFrame API:

df_emp = spark.table("glue.test.employee")
df_emp.groupBy("category").max("salary").show()

ReadingData | 135

Using Window Functions

Window functions are highly beneficial for performing calculations across a set
of rows that are related to the current row. Unlike aggregate functions, window
functions don’t group rows into a single output. They are typically used for tasks such
as ranking items and calculating rolling averages. Here is an example of how you can
use window functions in Spark with Apache Iceberg tables.

Spark SQL:

nwun

spark.sql(
SELECT * , RANK() OVER (PARTITION BY department ORDER BY salary DESC) as rank
FROM glue.test.employee
"""y . show()
In the preceding query, RANK() OVER (PARTITION BY department ORDER BY salary
DESC) creates a window partitioned by the department column and orders by salary
in descending order. For each partition, RANK() gives a unique rank starting from 1.

Here is what the output looks like:

id department salary region rank

2 Marketing 10000 NA 1

6 Marketing 5000 EMEA 2

5 Product 25000 NA 1

4 Product 17600 EMEA 2

3 Sales 8000 APAC 1
DataFrame API:
from import Window
from import row_number

df_emp = spark.table("glue.test.employee")

windowSpec = Window.partitionBy(df_emp['department']).orderBy(df_emp['sal
ary'].desc())

df_emp = df_emp.withColumn("row_number", row_number().over(windowSpec))
df_emp.toPandas()
In the preceding query, Window.partitionBy(df['department']).orderBy(df
['salary'].desc()) creates a window specification that groups data by department and
orders it by salary in descending order. Then, row_number () .over (windowSpec) applies

136 | Chapter 6: Apache Spark

the row_number() function over the defined window to generate a new row_number
column. The withColumn function adds this new column to the DataFrame.

Here is the output:

id department salary region row_number

2 Marketing 10000 NA 1

6 Marketing 5000 EMEA 2

5 Product 25000 NA 1

4 Product 17000 EMEA 2

3 Sales 8000 APAC 1

Writing Data

Apache Iceberg brings atomicity and transactional guarantees when writing data to
data lakes, thereby making these operations safe. In this section, we will explore
the INSERT INTO, MERGE INTO, INSERT OVERWRITE, DELETE, and UPDATE write opera-
tions so that you can gain hands-on experience with these critical data management
functions. We will use both Spark SQL and the DataFrameWriterV2 APIs wherever
applicable to understand these examples. Note that the DataFrameWriterV2 API does
not support all of these operations.

INSERT INTO

INSERT INTO allows you to insert new records into an existing Iceberg table.
Spark SQL:

spark.sqlL("INSERT INTO glue.test.employee VALUES (1, 'Software Engineer', 'Engi
neering', 25000, 'NA'), (2, 'Director', 'Sales', 22000, 'EMEA')")

DataFrame API:

from import Row

Create a DataFrame with the values
data = [Row(id=1, role='Software Engineer', department='Engineering', sal
ary=25000, region='NA"),

Row(id=2, role='Director', department='Sales', salary=22000,
region="'EMEA")]

df = spark.createDataFrame(data)

df.writeTo("glue.test.employee").append()

Writing Data | 137

Both of these APIs insert two records into the employee table.

MERGE INTO

MERGE INTO is used to update an existing row based on whether a specific condition is
met. If it is not met, you just insert the new record into the table.

Spark SQL:

wnn

spark.sql(

MERGE INTO glue.test.employee AS target

USING (SELECT * FROM employee_updates) AS source

ON target.id = source.id

WHEN MATCHED AND source.role = 'Manager' AND source.salary > 100000 THEN
UPDATE SET target.salary = source.salary

WHEN NOT MATCHED THEN
INSERT *

"

The preceding query first compares each row in the employee_updates table with
rows in the employee table based on the condition target.id = source.id. If a
match is found and if the role in the staging table is Manager with a salary greater
than 100000, the salary is updated with the data from the source table. If there is no
match, the new record is simply inserted.

INSERT OVERWRITE

To replace the data in an Iceberg table or partition with the result of a query, INSERT
OVERWRITE is used. Apache Spark provides two overwrite modes for this operation:
static and dynamic (by default, the mode is static). Let’s discuss these two modes in
detail.

Static overwrite

In static overwrite mode, Spark converts the PARTITION clause into a filter (predicate)
for determining which partitions to overwrite. If you run the query without the
PARTITION clause, it will replace all partitions. The following query overwrites only
the EMEA partition of the employee table with data from the employee_source table.
Note that this mode cannot replace hidden partitions because the PARTITION clause
can only reference table columns.

Spark SQL:

wun

spark.sql(
INSERT OVERWRITE glue.test.employees
PARTITION (region = 'EMEA')

SELECT *

FROM employee_source

138 | Chapter 6: Apache Spark

WHERE region = 'EMEA'
iy

DataFrame API:

from pyspark.sql.functions import col

Read from the source table
source_df = spark.read.table("glue.test.employee")

Filter rows where region is 'EMEA'
filtered_df = source_df.filter(col("region") == 'EMEA')

Overwrite in Iceberg table
filtered_df.writeTo("glue.test.employee").overwrite(col("region") == 'EMEA")

Dynamic overwrite

To configure dynamic overwrite mode, set the Spark config property,
spark.sql.sources.partitionOverwriteMode=dynamic. In this mode, any parti-
tions that correspond to rows returned by the SELECT query are replaced:

spark.conf.set("spark.sql.sources.partitionOverwriteMode", "dynamic")

In the following query, any partition in the employee table that matches the data
produced by the SELECT query will be replaced. Since we filter the employee_source
table with only the EMEA region data, only the corresponding EMEA partition will be
overwritten in the employee table.

Spark SQL:

spark.sql(
INSERT OVERWRITE glue.test.employee
SELECT * FROM employee_source

WHERE region = 'EMEA'

"

DataFrame API:

from pyspark.sql.functions import col

Configure dynamic partition overwrite mode
spark.conf.set("spark.sql.sources.partitionOverwriteMode", "dynamic")

Read from the source table
source_df = spark.read.table("glue.test.employee")

Filter rows where region is 'EMEA'
filtered_df = source_df.filter(col("region") == 'EMEA')

Overwrite in Iceberg table
filtered_df.writeTo("glue.test.employee").overwritePartitions()

WritingData | 139

The dynamic overwrite mode is generally recommended when writing to Iceberg
tables because it provides granular control over which partitions get overwritten
based on the query’s outcome.

DELETE FROM

DELETE FROM allows you to remove records from an Iceberg table based on a filter.
The following query removes all rows from the employee table where the id value is
less than 3.

Spark SQL:
spark.sql("DELETE FROM glue.test.employee WHERE id < 3")

Apache Iceberg supports two types of deletions depending on the filter condition
specified. If the filter condition matches entire partitions of a table, a metadata-only
delete is performed. This is a highly efficient operation as no datafiles are touched.
On the other hand, if the delete condition matches specific rows within a table,
Iceberg will rewrite the affected datafiles.

UPDATE

You can modify existing rows in a table using the UPDATE command based on condi-
tions specified in the query.

Spark SQL:

wnn

spark.sql(
UPDATE glue.test.employee
SET region = 'APAC', salary = 6000
WHERE id = 6

"

In this example, we updated the region and salary fields of the employee with 1d=6
in the employee table.

Here is another example:

wnn

spark.sql(
UPDATE glue.test.employee AS e

SET region = 'NA'

WHERE EXISTS (SELECT id FROM emp_history WHERE emp_NA.id = e.id)
"

In this case, we updated the region field for all employees whose id exists in the
emp_NA table. This showcases how you can use subqueries in your UPDATE commands
to base your updates on conditions across multiple tables.

140 | Chapter 6: Apache Spark

Iceberg Table Maintenance Procedures

Managing the datafiles and metadata files in your data lake is of paramount impor-
tance as your data grows over time. In Iceberg, metadata files are core to so many
critical operations, such as time travel and query optimization. However, with the
increase in the number of datafiles, the number of metadata files also increases.
Additionally, streaming-based ingestion jobs can lead to a lot of small files being
generated as data is written in smaller chunks as and when they arrive. It is therefore
important to have a strategy as part of your organization’s regular maintenance
process to remove these unnecessary metadata files or to compact smaller files into
larger ones for better read performance.

Apache Spark provides procedures for easy maintenance of Iceberg tables. In this
section, we will look at a few of these procedures. For a detailed read, please refer to
Chapter 4.

Expire Snapshots

Any modification to the data in Iceberg—be it an insert, update, delete, or upsert—
generates a new snapshot. These snapshots are retained by Iceberg for supporting
capabilities such as time travel. However, over a period of time you might end up with
a lot of snapshots and not all of them might be necessary. The expire_snapshots
procedure in Spark helps remove these older, unnecessary snapshots along with their
datafiles.

This procedure removes manifest lists, manifests, datafiles, and delete files that are
uniquely associated with expired snapshots, ensuring that files still in use by active
snapshots are retained.

Here is the generic function and an example of how to run this procedure:

Generic procedure
CALL catalog_name.system.expire_snapshots(table, older_than, retain_last)

spark.sql("CALL glue.system.expire_snapshots('test.employees',
date_sub(current_date(), 90), 50)")
This procedure deletes snapshots from the employee table that are older than 90 days
from the current date, while preserving the most recent 50 snapshots.

Rewrite Datafiles

The number of datafiles in a table has a direct impact on the performance of the
queries since there is a huge cost associated with opening, reading, and closing each
of the datafiles that are covered by the query. Also, a larger number of small files may
cause unnecessary metadata overhead. The rewrite_data_files procedure in Spark
allows you to compact these small files into larger ones for addressing these issues.

Iceberg Table Maintenance Procedures | 141

This procedure can also be used to organize the layout of your datafiles by leveraging
techniques such as sorting and z-ordering so that they are optimized for the queries.
This topic was also covered in Chapter 4.

Here is the generic procedure and a simple example of running it:

Generic procedure
CALL catalog_name.system.rewrite_data_files(table, strategy, sort_order, options)

spark.sql("CALL glue.system.rewrite_data_files('test.employee')")

The preceding procedure rewrites the datafiles by combining the small files in the
employee table using the default binpack algorithm and splits larger ones into smaller
files as per the default write size of the table.

Rewrite Manifests

Manifest files in Iceberg tables play a crucial role in optimizing scan planning as they
keep statistical information about the datafiles. The rewrite_manifests procedure
allows you to rewrite these manifests in parallel, thereby improving the speed and
efficiency of data scans. The following example procedure rewrites the manifests of
the employee table:

Generic procedure
CALL catalog_name.system.rewrite_manifests(table)

spark.sql("CALL test.system.rewrite_manifests('test.employee')")

Remove Orphan Files

Over time, certain datafiles in an Iceberg table might lose their reference in any
metadata files and become “orphaned” These files take up unnecessary storage space
and might lead to inconsistencies. The remove_orphan_files procedure takes care of
removing these orphaned files.

Here is an example of how to call this procedure:

Generic procedure
CALL catalog_name.system.remove_orphan_files(table, older_than, dry_run)

CALL glue.system.remove_orphan_files(table => 'test.employee', dry_run => true)

This procedure lets you do a dry run to preview the orphaned files associated with
the employee table to be deleted as part of this operation.

142 | Chapter 6: Apache Spark

Conclusion

This chapter explored methods for interacting with Iceberg tables from Apache
Spark. We looked at the different aspects of these interactions, such as doing the ini-
tial configuration, creating and modifying structures with DDL, performing analysis,
writing data, and performing table maintenance operations.

Chapter 7 will emphasize the engine-agnostic nature of Apache Iceberg, covering how
to perform these same operations from a different engine, Dremios SQL Engine.

Conclusion | 143

CHAPTER7
Dremio’s SQL Query Engine

Dremios SQL Query Engine, which is part of the Dremio Lakehouse Platform,
is widely used to support various analytical workloads such as ad hoc SQL or
low-latency business intelligence (BI) queries directly on the data stored in a data
lake. Dremio allows you to query data across multiple data sources, thereby enabling
federation of queries and providing a unified view of the data without the need to
move or copy it. All of this is done with the support of a vectorized query engine that
allows Dremio to achieve fast query results even on extremely large datasets. This,
when combined with the capabilities of the Apache Iceberg table format, provides a
potent combination to manage and query datasets with improved performance and
ease of the UL

This chapter will provide an overview of how to get hands-on with Dremio and
Iceberg.

Configuration

Dremios Lakehouse Platform has both software- and cloud-based options. In this
chapter, the examples will use Dremio Cloud. As discussed in Chapter 6, the first step
to get started with Iceberg tables is to define the catalog configuration. To configure
an Iceberg catalog in the Dremio Lakehouse Platform, all you need to do is add a
new source by going to the Sources section of the Dremio interface and selecting Add
Data Source, as shown in Figure 7-1.

145

Add Data Source X

Nessie Catalogs

L Nessie (Preview)

Metastores
il AWS Glue Data Catalog
@ Hive 2.x
@ Hive 3.x

Object Storage
] Amazon S3

. Azure Data Lake Storage Gen1
/s Azure Storage

e Google Cloud Storage
> HOFs

Q v

Figure 7-1. Sources available to connect to in Dremio

Here, you can add a new source and choose between AWS Glue, Amazon Simple
Storage Service (Amazon S3), or relational databases. Once you make your choice,
Dremio will use the proper Iceberg catalog for that data source. Table 7-1 maps the
Dremio source to the Iceberg catalog type.

Table 7-1. Apache Iceberg catalog to Dremio source mapping

Dremio source type Iceberg catalog

AWS Glue AWS Glue catalog
Amazon Simple Storage Service, Azure Data Lake Storage, Hadoop catalog
Hadoop Distributed File System, Google Cloud Storage

Arctic/Nessie Nessie catalog

After the configuration is successful, Dremio will automatically connect to the
respective Iceberg catalog, and you can start creating your Iceberg table (you may

146 | Chapter7: Dremio’s SQL Query Engine

have to specify a warehouse location for certain catalogs for creating tables; refer to
the Dremio documentation for your use case).

Data Definition Language Operations

In this section, we will explore how to do DDL operations in Dremio’s SQL Query
Engine to work with Iceberg tables.

CREATE TABLE

You can create an Iceberg table using Dremios CREATE TABLE statement. We will
discuss a few variations of this command so that you can become familiar with the
available options.

Let’s start with basic table creation:

CREATE TABLE employee (ID int, role varchar, department varchar, salary float,
region varchar)
The preceding statement will create a table called employee with five columns and
will store it in the source specified. In this case, it is an Amazon S3 source.

CREATE TABLE. ..AS SELECT

Like other compute engines, such as Spark, Dremio provides the CREATE TABLE..AS
SELECT statement to create an Iceberg table from an existing table or datafile:

CREATE TABLE employee AS SELECT * FROM mySource."myFolder"."empData.csv"

Here, assuming the datafile exists in the Dremio source mySource, Dremio will run
the query and create a table called employee to match the schema and records of the
query result set.

CREATE TABLE with partitioning and sorting

You can optimize your tables for specific types of queries using specific clauses such
as PARTITION BY and LOCALSORT BY. Whereas the PARTITION BY clause partitions the
table by specific columns, the LOCALSORT BY clause sorts each Parquet file fragment
by the specified column for faster data retrieval.

The following example creates a table called emp_partitioned, which is partitioned
by department and is locally sorted by id. This will optimize queries that often filter
by department and sort- or range-filter by id:

CREATE TABLE emp_partitioned (id int, role varchar, department varchar)

PARTITION BY (department)
LOCALSORT BY (id)

Data Definition Language Operations | 147

With Iceberg tables, you can also use more advanced partitioning strategies by
employing partition transform functions such as year(), month(), day(), hour(),
bucket(), and truncate(). These transformations allow you to partition the data
based on time components, hashed values, or truncated values, providing more
flexibility and optimization possibilities.

Here is how you can create a table and partition it by a month transform:

CREATE TABLE emp_partitioned_by_month
(id int, role varchar, department varchar, join_date date)
PARTITION BY (month(join_date))

CREATE TABLE with row access and column masking

Dremio also allows you to create tables with row access and column masking policies,
providing an additional layer of security. The row access policy determines which
rows a user can see or modify, while the column masking policy masks specific
column data based on a user-defined function (UDF).

Here are some examples that assume you have the UDFs restrict_region and
mask_salary:

-- Create the restrict_region UDF

CREATE FUNCTION restrict_region(region VARCHAR)

RETURNS BOOLEAN

RETURN SELECT CASE
WHEN query_user()="'jdoe@dremio.com' OR is_member('HR') THEN true
WHEN region = 'North' THEN true
ELSE false

END;

-- Create the regional_employee_data table with the row access policy
CREATE TABLE regional_employee_data (

id INT,

role VARCHAR,

department VARCHAR,

salary FLOAT,

region VARCHAR,

ROW ACCESS POLICY restrict_region(region)

)

The preceding statement creates a table, regional_employee_data, while restricting
access to specific regions.

-- Create the mask_salary UDF

CREATE FUNCTION mask_salary(salary VARCHAR)

RETURNS VARCHAR

RETURN SELECT CASE
WHEN query_user()="'jdoe@dremio.com' OR is_member('HR') THEN salary
ELSE 'XXX-XX'

END;

148 | Chapter7: Dremio’s SQL Query Engine

-- Create the employee_salaries table with the column masking policy
CREATE TABLE employee_salaries (
id INT,
salary VARCHAR MASKING POLICY mask_salary (salary),
department VARCHAR
);
The preceding query creates a table, employee_salaries, while masking the salary
column for security reasons.

ALTER TABLE

The ALTER TABLE statement allows you to modify the structure of an existing table.
This can include adding or dropping columns, changing data types, renaming col-
umns, setting or unsetting masking policies, and more.

Let’s dive into some examples.

ADD COLUMNS

Let’s say you need to add a column called date_of_birth to keep track of each
employee’s birth date. You can use the ADD COLUMNS command, like this:

ALTER TABLE employee
ADD COLUMNS (date_of_birth DATE);

MODIFY COLUMN

If you want to set or unset column masking policies for a particular column, you can
do so using the MODIFY COLUMN command:

-- Setting a Masking Policy on an Existing Table
ALTER TABLE employee

MODIFY COLUMN ssn_col

SET MASKING POLICY protect_ssn;

-- Unsetting a Masking Policy
ALTER TABLE employee

MODIFY COLUMN ssn_col

UNSET MASKING POLICY;+

ALTER COLUMN

To rename a specific column present in an Iceberg table using Dremio, you can
leverage the ALTER COLUMN command:

ALTER TABLE employee
ALTER COLUMN role title VARCHAR;

This statement changes the role column to title in the employee table.

Data Definition Language Operations | 149

DROP COLUMN

If for some reason you no longer need the department column in your table, you can
use the DROP COLUMN command to remove it:

ALTER TABLE employee
DROP COLUMN department;

DROP TABLE

The DROP TABLE statement allows you to remove a table from your data source.
However, it is important to note that the effect of this command varies based on the
data source type. For example, if your data source is an Amazon S3 bucket, the DROP
TABLE command permanently deletes all the data and metadata files, and hence they
cannot be restored. If your data source is AWS Glue, the command deletes only the
table from the catalog; the datafiles will still exist in the warehouse location.

Let’s assume that you want to drop the employee table. The SQL statement would
look like this:

DROP TABLE employee;

This will permanently delete the table with all the associated data and metadata files
since the data source here is Amazon S3.

Reading Data

Dremio, with its support for standard SQL, provides a simple and intuitive way to
query data. This section will guide you through the different ways to read data from
an Iceberg table.

Using the SELECT Query

The most basic way to retrieve data is to use a SELECT query, which can query the
entire table or specific columns. For instance, to retrieve all data from the employee
table, you can use the following query:

SELECT * FROM employee;

Filtering Rows

Often, we want to retrieve only a subset of the records that meet certain criteria. This
is achieved with the WHERE clause:

SELECT * FROM employee
WHERE department = 'Engineering';

150 | Chapter7: Dremio’s SQL Query Engine

The preceding query will filter out rows that don’t meet the criterion department =
'"Engineering’.

Using Aggregated Queries

Aggregated queries allow you to compute aggregated values, such as the sum, aver-
age, maximum, and minimum, from an Iceberg table using Dremio. Here are a few
examples.

Count records
The COUNT() function in Dremio gives you the number of records in a table:

SELECT role, COUNT(*) as employee_count
FROM employee
GROUP BY role;

This query counts the number of employees for each unique role.

Find the average

To find the average salary in each region, you can use the following query, which uses
the AVG() function:

SELECT region, AVG(salary) FROM employee GROUP BY region;

Here, the GROUP BY clause groups the data by region, and the AVG() function com-
putes the average of each group.

Sum the value

The SUM() function calculates the total for a given column. The following example
calculates the total salary for each department:
SELECT department, SUM(salary) as total_salary

FROM employee
GROUP BY department;

Find the maximum

The MAX() function in Dremio gives you the maximum value of each column. For
example, to find the highest salary in each job category, you can use the following
query:

SELECT department, MAX(salary) as highest_salary
FROM employee
GROUP BY department;

ReadingData | 151

Using Window Functions

Window functions perform calculations across a set of table rows related to the
current row. They provide an easy way to perform complex computations.

For example, let’s say you want to rank employees within each region based on their
salary. You could use the RANK() function in Dremio:

SELECT salary, region,
RANK() OVER (PARTITION BY region ORDER BY salary DESC) AS salary_rank
FROM company_data.employee;

Here, the RANK() function is applied to each partition of the data, and ranks are
ordered by salary within each region. A new column called salary_rank is added
to show the rank of each employee’s salary within their region.

Here is the output:

salary region salary_rank

28000 EMEA 1

16000 EMEA 2

30000 NA 1

18000 NA 2

Writing Data

Dremio provides multiple data manipulation options, ranging from inserting new
data to updating or deleting existing rows from an Iceberg table. We will explore a
few of these operations in this section.

INSERT INTO

The INSERT INTO operation allows you to add new records into an Iceberg table. For
instance, let’s say that you want to add two new employees to the employee table:
INSERT INTO employee VALUES
(7, 'Solution Architect', 'Sales', 15000, 'EMEA'),
(8, 'Product Manager', 'Product', 28000, 'NA');
Here, two new rows for each employee with IDs 7 and 8 will be added to the
employee table.

152 | Chapter7: Dremio’s SQL Query Engine

COPYINTO

Another easy way to insert new data to an Iceberg table is to use the COPY INTO
statement. This statement allows you to load data from CSV, JSON, or Parquet files
stored in different sources and convert them into Iceberg tables. Here is an example
of using the COPY INTO statement:

COPY INTO employee

FROM '@mySource/myFolder/'

FILE_FORMAT 'csv';
The preceding statement copies all the CSV files present in the folder myFolder

and inserts them into the employee table. The @mySource can be any storage source
connected to Dremio (HDFS, S3, ADLS, etc.).

Here is how to copy just one specific file:

COPY INTO employee

FROM '@mySource/myFolder/employee_data.csv';
The result of the COPY INTO operation would show the number of rows inserted from
the source datafiles to your Iceberg table.

MERGE INTO

When you want to insert new data or update existing data conditionally, you can use
the MERGE function in Dremio. This function matches records from two tables (source
and target) based on a given condition and performs INSERT or UPDATE operations
accordingly.

For example, suppose you have another table named new_employee with updated
salary data for existing employees and some new employees. Now you want to merge
this table with the employee table. Here is how you can do it:
MERGE INTO employee AS e USING new_employee AS ne ON (e.id = ne.id)
WHEN MATCHED THEN UPDATE SET salary = ne.salary

WHEN NOT MATCHED THEN INSERT (id, role, department, salary, region) VALUES
(ne.id, ne.role, ne.department, ne.salary, ne.region);

DELETE

The DELETE operation allows you to eliminate rows based on specific conditions. For
example, if you need to remove all employees from the NA region in the employee
table, you would use this query:

DELETE FROM employee WHERE region = 'NA';

WritingData | 153

UPDATE

UPDATE lets you modify existing rows in an Iceberg table. For instance, let’s say you
want to increase the salary of all employees of the Marketing team by $2,000. You
could do this with an UPDATE operation:

UPDATE employee
SET salary = salary + 2000
WHERE department = 'Marketing';

This query updates the salary field in the employee table, adding $2,000 to the
current salary for every employee whose job department is Marketing.

Note that Dremio doesn’t support join conditions in WHERE clauses when using
UPDATE. If you need to use a join condition, you should use a MERGE statement.

Iceberg Table Maintenance

Building upon the discussions from “Iceberg Table Maintenance Procedures” on page
141, it becomes apparent that the maintenance of Apache Iceberg tables plays a
pivotal role in managing table size, enhancing query performance, and keeping the
relevant versions of data. This involves systematic administration and regular purging
of extraneous data and metadata files associated with your Iceberg tables. Dremio,
as the compute engine, provides a couple of intuitive SQL commands to deal with a
range of table maintenance operations. Let’s take a look at a few of these.

Expire Snapshots

Expiring unnecessary snapshots is critical because, over time, they can take up an
increasing amount of storage space. Additionally, the accumulation of snapshots
increases the metadata size of the table, which can impact the performance of queries.
Dremio provides the VACUUM method to expire snapshots from a specific Iceberg
table. Here is an example:

VACUUM TABLE 'employee'

EXPIRE SNAPSHOTS older_than TIMESTAMP '2023-07-10 00:00:00.000' retain_last

30;
In this case, all snapshots older than 2023-07-10 00:00:00.000 from the
employee_data table will be removed, while keeping the 30 most recent snapshots.

Rewrite Datafiles

Dremio provides the capability to optimize query performance by rewriting datafiles.
This process of compaction logically combines smaller files into an optimal file size
or splits larger files to reduce metadata overhead and runtime file-open costs. Dremio
by default uses the binpack strategy to compact datafiles. Let’s say you want to rewrite

154 | Chapter7: Dremio’s SQL Query Engine

datafiles of the employee table to an optimal size of 128 MB. The SQL query would
look like this:

OPTIMIZE TABLE 'employee'
REWRITE DATA (TARGET_FILE_SIZE_MB=128);

Dremio also allows you to rewrite datafiles for specific partitions. For instance, let’s
say the employee table is partitioned by year. Now, if you want to rewrite datafiles
only for the partition corresponding to the year 2023, Dremio allows you to achieve
such granular control using a query such as the following:

OPTIMIZE TABLE 'employee'
FOR PARTITIONS year=2023;

Rewrite Manifests

Manifest files are used by Iceberg to keep track of data, functioning as an index on
the table’s datafiles. These manifests are extremely useful for efficient query planning
and processing, thereby helping to prune the irrelevant datafiles. However, as with
other metadata files, manifests can grow in size, specifically with ingestion of stream-
ing data or frequent DML operations. To mitigate this, Dremio provides a feature
to rewrite manifest files based on specific size criteria. The default target size for
manifest files is 8 MB.

For example, if you want to rewrite manifest files of the employee table, the SQL
command will be as follows:

OPTIMIZE TABLE 'employee'
REWRITE MANIFESTS;

Conclusion

This chapter explored methods for interacting with Iceberg tables from Dremio. We
looked at the different aspects of these interactions, such as initial configuration,
creating and modifying structures with DDL, performing analysis, writing data, and
performing table maintenance operations.

Chapter 8 will continue to emphasize the engine-agnostic nature of Apache Iceberg,
covering how to perform operations from AWS Glue.

Conclusion | 155

CHAPTER 8
AWS Glue

AWS Glue is a fully managed data integration service that provides a streamlined
way to prepare and integrate data for various analytical workloads, such as business
intelligence (BI) and machine learning (ML). It also offers a user-friendly visual
interface that simplifies the process of job creation, execution, and management. By
leveraging AWS Glue, users can use the scalable, serverless data catalog to manage
their workflows. AWS Glue 3.0 and later versions support the Apache Iceberg table
format. This means you can use Glue with Iceberg for a range of operations, such
as creating Iceberg tables on object stores such as Amazon Simple Storage Service
(Amazon S3), performing read and write operations, or just leveraging the Glue
catalog for storing all your Iceberg tables.

In this chapter, you will learn how to configure AWS Glue with Apache Iceberg tables
and perform various operations such as CREATE, READ, and INSERT.

As of this writing, AWS Glue 4.0 supports Iceberg v1.0.0, whereas AWS Glue 3.0
supports Iceberg v0.13.1.

Configuration

The AWS Glue integration tool works based on “jobs” that represent a single unit
of work, moving data from a source (anywhere) to a destination (an Apache Iceberg
table, for our purposes). We will review the configurations needed when creating a
job using Apache Iceberg as a source or destination.

157

Creating a Glue Database

The first step is to create a database in the AWS Glue Data catalog. The Glue Data
catalog acts as a centralized repository that stores all the metadata information of
your tables. A Glue catalog database acts as a namespace under which many tables
can be grouped and governed in the catalog.

To create the database, navigate to the AWS Glue console, and in the left navigation
pane, click Databases under Data Catalog. Then click “Add database” and enter a
unique name for your database. For this demonstration, let’s call it “test” Click Create
Database to finalize the creation.

Configuring the Glue ETL Job

To create a new ETL job, we will leverage the Visual ETL interface of Glue. Navigate
to the Visual ETL section of AWS Glue in the left navigation pane and select Visual
with a Blank Canvas. You will be redirected to the visual editor, where you can begin
creating your job.

Configure the data source

Before you start configuring the job, it is important to note that you will create the
Iceberg table using an existing dataset stored in an S3 bucket. You will leverage the
CREATE TABLE..AS SELECT (CTAS) command to create the table. So, as a first step, you
will need to add an S3 source to your visual canvas. To do so, click the Add Node
button and select “Amazon S3 (source)” from the list.

Now, in Data Source Properties, add the location of the S3 bucket that stores the
dataset, and set the Data Format as CSV. You can find images of the UI for reference
on the book’s GitHub repository.

After adding the data source node, go to the “Job details” tab. This is where you will
fill in all the necessary information for the Glue job to connect with Apache Iceberg.
Let’s explore these configurations.

Basic properties

In the Basic Properties section, you'll need to configure several key settings for your
Glue job as part of the Apache Iceberg integration. First, provide a name for your
job; for example, you can name it “Iceberg ETL” Next, select an appropriate IAM
role that has the necessary permissions for Glue operations. Choose “Glue 4.0” as
the Glue version since it supports Apache Iceberg 1.0.0. Set the script language to
“Python 3” to specify the programming language for your ETL script. Lastly, specify
the requested number of workers as “2” to utilize standard workers for your task.

158 | Chapter8: AWS Glue

https://oreil.ly/supp-guide-apache-iceberg

Advanced properties

Under Advanced Properties, you will see the Job Parameters section, where you will
specify the parameters for the job; the parameters are key-value pairs that allow you
to customize the job when it runs. The two key parameters for Apache Iceberg usage
are - -datalake-formats and - -conf.

Set the - -datalake-formats value to iceberg to enable the Iceberg table format for
this job. The --conf field includes a set of key-value pairs to configure the Iceberg
catalog in the Apache Spark session that runs when the job begins (this should be
familiar to you as the configurations you used in Chapter 5). Here, you specify the
extensions for Iceberg, catalog implementation, and other details.

Here is how the - -conf parameter value would look (note that the initial - -conf isn’t
needed as that is passed as the key of the parameter; also, be mindful of unseen line
breaks that may result in configurations being skipped over):

--conf spark.sql.extensions=org.apache.iceberg.spark.extensions.IcebergSparkSes-
sionExtensions

--conf spark.sql.catalog.glue_catalog=org.apache.iceberg.spark.SparkCatalog
--conf spark.sql.catalog.glue_catalog.warehouse=s3://<your-warehouse-dir>/
--conf spark.sql.catalog.glue_catalog.catalog-impl=org.apache.ice-
berg.aws.glue.GlueCatalog

--conf spark.sql.catalog.glue_catalog.io-impl=org.apache.iceberg.aws.s3.S3Filel0

Finally, ensure that you replace <your-warehouse-dir> with the S3 path where you
want your tables to be written to.

After defining the required configurations, you can save the job and then head to the
Script tab. You should see the job’s PySpark script, as presented here:

import

from import *

from import getResolvedOptions
from import SparkContext
from import GlueContext
from import Job

args = getResolvedOptions(sys.argv, ["JOB_NAME"])
sc = SparkContext()

glueContext = GlueContext(sc)

spark = glueContext.spark_session

job = Job(glueContext)

job.init(args["JOB_NAME"], args)

Script generated for node Amazon S3

AmazonS3_node1689692483975 = glueContext.create_dynamic_frame.from_options(
format_options={"quoteChar": '"', "withHeader": True, "separator": ","},
connection_type="s3",
format="csv",

connection_options={

Configuration | 159

"paths": ["s3://dm-iceberg/datasets/salesdata.csv"],
"recurse": True,
1,
transformation_ctx="AmazonS3_node1689692483975",
)

job.commit()

Note that the imported data here is in a Glue DynamicFrame, which is a custom
DataFrame construct for AWS Glue. As an additional step, you will convert this
DynamicFrame to a Spark DataFrame using the method toDF(). This conversion is
necessary because DataFrames have some methods you’ll need in order to convert
them into an SQL view. Finally, turn the DataFrame into a temporary SQL view using
the createOrReplaceTempView() method, as shown in the following snippet:

import sys

from awsglue.transforms import *

from awsglue.utils import getResolvedOptions
from pyspark.context import SparkContext
from awsglue.context import GlueContext
from awsglue.job import Job

args = getResolvedOptions(sys.argv, ["JOB_NAME"])
sc = SparkContext()

glueContext = GlueContext(sc)

spark = glueContext.spark_session

job = Job(glueContext)

job.init(args["JOB_NAME"], args)

Script generated for node Amazon S3, add toDF()
To Convert DynamicFrame into a DataFrame
df = glueContext.create_dynamic_frame.from_options(
format_options={"quoteChar": '"', "withHeader": True, "separator": ","},
connection_type="s3",
format="csv",
connection_options={
"paths": ["s3://dm-iceberg/datasets/salesdata.csv"]
1,
transformation_ctx="AmazonS3_node1689692483975",
).toDF()

Turn Dataframe into an SQL Temporary View
df.createOrReplaceTempView("temp_df")

Now that all the required configurations have been set, you should be ready to start
interacting with Iceberg via Glue. Let’s review a few of these operations so that you
have a practical understanding of them.

160 | Chapter8: AWS Glue

Create a Table Using the Glue Data Catalog

To create an Iceberg table using the Glue catalog, you can leverage the CTAS state-
ment. Note that in the previous step, you created a temporary view, temp_df, based
on your dataset. So all you need to do is use this view to create the Iceberg table. Go
to the Script tab in the Glue job and add the following code:

df.createOrReplaceTempView("temp_df")

query = f"""

CREATE TABLE glue_catalog.test.employee
USING iceberg

AS SELECT * FROM temp_df

wnn

spark.sql(query)

The preceding code created an Iceberg table called employee and stored it in the
glue_catalog within the database test.

Read the Table

The GlueContext object, which allows you to interact with the Glue catalog, includes
a create_data_frame.from_catalog() method to return a table in the Glue catalog
as a DataFrame. Run the following code in the Script tab of your Glue job:

from import GlueContext
from import SparkContext

sc = SparkContext()
glueContext = GlueContext(sc)

additional_options = {}

Use the create_data_frame. from_catalog() method to read an Iceberg table
df = glueContext.create_data_frame.from_catalog(

database="test",

table_name="employee",

additional_options=additional_options

)

Insert the Data

While you can use Spark SQL to do any operation with the Apache Iceberg tables
in your Glue catalog, if you want to use the Spark DataFrame API to write to a
table, you should use the GlueContext.write_data_frame.from_catalog() method.
This method writes a DataFrame to the target table in the target database in your
Glue catalog. A prerequisite for this is to set the --enable-glue-datacatalog job
parameter, which allows AWS Glue to use the Glue Data catalog as an Apache Spark
Hive Metastore.

Create a Table Using the Glue Data Catalog | 161

The following code inserts data from a df DataFrame into the Iceberg employee table
using the Glue Data catalog:

from import GlueContext
from import SparkContext

sc = SparkContext()
glueContext = GlueContext(sc)

additional_options = {}

Use the write_data_frame. from catalog() method of GlueContext to insert data
into an Iceberg table
glueContext.write_data_frame.from_catalog(

frame=df,

database="test",

table_name="employee",

additional_options=additional_options

)

Conclusion

In this chapter, we explained how you can use AWS Glue to reduce much of the
friction in using Spark to do ETL (deploying/configuring clusters, scheduling jobs,
submitting jobs, etc.). With its visual editor and integration with table formats such as
Apache Iceberg, AWS Glue becomes an effective tool for data integration with Apache
Iceberg.

In Chapter 9, we will explore how to use Apache Iceberg with Apache Flink.

162 | Chapter8: AWS Glue

CHAPTER9
Apache Flink

Apache Flink is an efficient stream processing framework that can process batch and
real-time data with high throughput and low latency. It has robust features, such as
event-time processing, exactly-once semantics, and diverse windowing mechanisms.
The combination of Apache Flink and Apache Iceberg brings several advantages.
Capabilities in Iceberg, such as snapshot isolation for reads and writes, the ability
to handle multiple concurrent operations, ACID-compliant queries, and incremental
reads, allow Flink to do operations that were typically difficult with older table
formats. Together they provide an efficient and scalable platform for processing
large-scale data, specifically for streaming use cases.

In this chapter, we will delve into hands-on usage of Apache Flink with Apache
Iceberg. We will primarily look at configuring and setting up the Flink SQL Client
with an Iceberg catalog for most of the examples, such as running DDL commands,
executing read and write queries, and showing how to do some of these operations
using the Flink DataStream and Table APIs in Java. All of these can run on your local
machine with the steps provided.

Configuration

Let’s start by going over the basic configuration and setup of a Flink cluster, whether
you are using standard Flink with jobs written in Java or whether you are using
PyFlink, which compiles jobs from Python to Java.

Prerequisites

You can either download and unpack the latest binary from the official Apache
Flink website or use a specific supported version of Flink with Iceberg. For this dem-
onstration, we'll use Flink 1.16.1. Here are the commands that will set appropriate

163

https://flink.apache.org/downloads
https://flink.apache.org/downloads

environment variables, download the binary, and unpack it (it is assumed that you
already have Java installed):

FLINK_VERSION=1.16.1
SCALA_VERSION=2.12
APACHE_FLINK_URL=https://archive.apache.org/dist/flink/

wget ${APACHE_FLINK_URL}/flink-${FLINK_VERSION}/flink-${FLINK_VERSION}-bin-
scala_${SCALA_VERSION}.tgz

tar xzvf flink-${FLINK_VERSION}-bin-scala_${SCALA_VERSION}.tgz

Next, download the compatible Iceberg runtime JAR file and place it in the
FLINK_HOME/lib directory. This runtime library enables Iceberg integration with
Flink. If you want to download the latest JAR, you can get it from the iceberg-
flink-runtime JAR page on the Maven repository website. We will use iceberg-
flink-runtime-1.16 here. Table 9-1 highlights the supported Flink version with
Iceberg and the corresponding runtime JAR. These are the two latest versions of Flink
maintained as of writing this chapter.

Table 9-1. Flink version and Iceberg support

Version Initial Iceberg support Latest Iceberg support Latest runtime JAR

1.16 1.1.0 1.3.0 iceberg-flink-runtime-1.16
117 13.0 13.0 iceberg-flink-runtime-1.17

The Hadoop Common libraries are necessary for Flink to interact with filesystems
such as the Amazon Simple Storage Service (Amazon S3) and Hadoop Distributed
File System (HDEFS). Here, you will run the Flink cluster within a Hadoop environ-
ment and use a Hadoop catalog for your Iceberg tables. Therefore, you must down-
load a compatible Hadoop version comprising these common libraries. However, if
you are running Flink outside Hadoop, you can download the JAR file (v2.8.3 is a
stable version):

APACHE_HADOOP_URL=https://archive.apache.org/dist/hadoop/
HADOOP_VERSION=2.8.5

wget ${APACHE_HADOOP_URL}/common/hadoop-${HADOOP_VERSION}/hadoop-${HADOOP_VER-
SION}.tar.gz

tar xzvf hadoop-${HADOOP_VERSION}.tar.gz

Next, set HADOOP_HOME to point to the downloaded version of Hadoop and add
Hadoop’s classpath to your environment variables, like this (this will be used by the
Flink cluster when it starts up):

164 | Chapter9: Apache Flink

https://oreil.ly/X0W_B
https://oreil.ly/hEabL

HADOOP_HOME="pwd " /hadoop- ${HADOOP_VERSION}
export HADOOP_CLASSPATH="$HADOOP_HOME/bin/hadoop classpath’

You may also need the following classes:

Hadoop AWS classes
This is required only if you plan to read or write data specifically from Amazon
S3. You can download it from the Maven repository.

AWS bundled classes
These classes facilitate interaction with numerous AWS services, including S3,
IAM, AWS Lambda, and more. Although the Hadoop AWS library offers basic
S3 operations, the AWS bundle allows you to do more complex tasks, such as
uploading and downloading items. You can find a stable version on the Maven
repository.

Before we start the Flink cluster, there are two important concepts to understand
regarding FlinK’s architecture:

JobManager
The JobManager is an orchestrator. It is responsible for coordinating and manag-
ing different activities within a Flink application. This includes scheduling tasks,
coordinating checkpoints, and handling the execution of code (directed graphs
called JobGraphs).

TaskManager
The TaskManager is responsible for executing the tasks assigned by the JobMan
ager. It has a set of slots (the smallest unit of resource scheduling) that allows it
to execute multiple tasks in separate threads.

These two components and related parameters can be modified to adhere to your
requirements in the configuration file, flink-conf.yaml, present in the FLINK_HOME/
lib directory.

Start the Flink Cluster and Flink SQL Client

Now start the Flink cluster with the following command:

./bin/start-cluster.sh
This will start the Flink cluster locally on your machine, and you should see some-
thing like this:

Starting cluster.
Starting standalonesession daemon on host Dipankars-MBP.
Starting taskexecutor daemon on host Dipankars-MBP.

Configuration | 165

https://oreil.ly/BKwiq
https://oreil.ly/xkVum
https://oreil.ly/xkVum

Once the Flink cluster is up and running, you can launch the Flink SQL Client using
this command:

./bin/sql-client.sh embedded

As it begins, you will see an ASCII text version of the Flink logo with your prompt
changing to “Flink SQL>” to indicate you are now in Flink SQL.

Data Definition Language Operations

Flink SQL provides a range of DDL operations for Apache Iceberg tables. In this
section, we will go through some of the common DDL operations that you can run.

CREATE CATALOG

The first thing to configure to start working with Apache Iceberg tables is the catalog.
Iceberg by default ships with Hadoop JARs for the Hadoop catalog, but there are also
lots of other catalog options available with Apache Flink, such as Hive, REST, and
custom catalogs like AWS Glue and Project Nessie.

To create an Iceberg catalog using Flink SQL, you can use the following query:

CREATE CATALOG <catalog_name> WITH (
"type'="1iceberg',
'catalog-type'=<values>
<config_key>=<config_value>
);
There are essential properties to consider when configuring catalogs for Apache
Iceberg tables in Flink SQL. The type property must always be set to iceberg to
indicate the catalog type. When working with built-in catalogs such as Hive, Hadoop,
and REST, you should specify the catalog-type accordingly. However, if youre
dealing with custom catalogs such as AWS Glue and Project Nessie, it’s important to
leave the catalog-type unset. Additionally, suppose youre using a custom catalog
and have left catalog-type unset. In that case, you must specify the catalog-impl
property, which should contain the fully qualified class name of your custom catalog
implementation. These properties play a crucial role in configuring and defining the
behavior of your Iceberg catalog within the Flink SQL environment.

The Hadoop catalog

Iceberg supports directory-based catalogs such as the Hadoop catalog in HDFS. Here
is an example that shows how to configure a Hadoop catalog using Flink SQL:

166 | Chapter9: Apache Flink

CREATE CATALOG local_catalog WITH (
'"type'="iceberg',
'catalog-type'="hadoop',
'warehouse'="hdfs://nn:8020/warehouse/path'
);
This statement will create an Iceberg catalog named local_catalog. The type =
'iceberg' is a required parameter to let Flink know to create an Iceberg catalog.
The 'catalog-type'="'hadoop' parameter tells Flink that this Iceberg catalog is a
Hadoop catalog, meaning that it will use any directory-based catalog to manage and
store the metadata and datafiles. The 'warehouse'='hdfs://nn:8020/warehouse/
path' parameter specifies the HDFS directory that the Hadoop catalog will use
to store metadata files and datafiles. Whenever you create a new table in this cata-
log, these files will be stored in this HDFS directory. If you want to use a local
folder here instead of the HDFS directory, you can do so by using something like
'warehouse'="file:///absolute/path/to/warehouse'. Another common option
is to use cloud object storage here, which can be specified by setting 'ware
house'= 's3://my-bucket/hadoopcatalog/'. Please be sure to set the 'io-impl'=
'org.apache.iceberg.aws.s3.53FileI0"' property and download the required AWS
dependencies to interact with AWS S3 (as discussed in Chapter 5).

You can validate whether your catalog was created successfully by using the following
command:

show catalogs;
You should see output similar to the following:

[Flink SQL> show catalogs;
catalog name
default_catalog
local_catalog

2 rows in set

After creating the catalog, you can set it as the current catalog using the following
command:

USE CATALOG local_catalog;

The Hive catalog

Since Iceberg by default doesn't come with Hive JARs, you must make sure that the
required dependencies are available in your Flink environment and are loaded when
starting the Flink SQL Client. You can download the latest JAR from the Maven
repository. Once you have the flink-sql-connector-hive-2.3.9_2.12-1.16.1.jar file, it
needs to be made available to the Flink SQL Client. To do so, you can place the JARs
in the /lib directory of your Flink folder. Once the JARs are in the correct location,
you can start the Flink SQL Client.

Data Definition Language Operations | 167

https://oreil.ly/fR1k_
https://oreil.ly/fR1k_

Once the dependencies are set and the Flink SQL Client is started, you can create an
Iceberg Hive catalog using the following query:

CREATE CATALOG hive_catalog WITH (
"type'="iceberg',
'catalog-type'="hive',
'uri'="thrift://localhost:9083"',
‘clients'='5",
'warehouse'="hdfs://nn:8020/warehouse/path'
);
There are key properties to consider in the context of Hive-specific parameters
for configuring Apache Iceberg tables. The 'uri' property pertains to the Hive
Metastore’s thrift URI, essential for establishing a connection to the Hive Metastore.
The 'clients' property, though optional, allows you to specify the pool size for
Hive Metastore clients, with a default value of 2. Finally, the 'warehouse' property is
crucial as it denotes the storage location, specifying where the metadata and datafiles
associated with your Hive-based Iceberg catalog will be stored. These parameters are
instrumental in tailoring the behavior of your Iceberg catalog when integrated with
Hive within the Apache Flink SQL environment.

After creating the catalog, you can set it as the current catalog using the following
command:

USE CATALOG hive_catalog;

Custom catalogs

Flink also provides support for creating a custom Iceberg catalog implementation by
specitying the catalog-impl property. Here is an example:
CREATE CATALOG custom_catalog WITH (
"type'="iceberg',
'catalog-impl'="com.my.custom.CatalogImpl',
'my-additional-catalog-config'="my-value'
);
The catalog-impl property expects the class name of your custom catalog imple-
mentation. For example, if you are using Nessie as a custom catalog, the class name
would be org.apache.iceberg.nessie.NessieCatalog.

CREATE DATABASE

Flink SQL comes with a default database. If you want to create a new database, here is
how you can do so:

CREATE DATABASE iceberg_db;

168 | Chapter9: Apache Flink

The preceding code will create a new database named iceberg_db. This database will
be stored within the currently active catalog. To switch your operations into this new
database, you need to use the USE statement:

USE iceberg_db;

CREATE TABLE

The next step is to create an Iceberg table using Flink SQL. Here is an example of
creating a table:

CREATE TABLE employee (
id BIGINT,
role STRING,
department STRING,
salary FLOAT,
region STRING

) WITH (
'connector'="1ceberg'

);
The preceding query creates an Iceberg table, emp, with five columns. The 'connec

tor'="'1iceberg' property tells Flink that you are using the Iceberg connector to
create this table.

CREATE TABLE. . .PARTITIONED BY

To create a partitioned Iceberg table using Flink SQL, you can use a query such as
this:
CREATE TABLE emp_partitioned_table (
id BIGINT,
role STRING,
) PARTITIONED BY (role) WITH (
'connector'="'1ceberg'
);
The preceding query creates a table called emp_partitioned_table that is partitioned
by the role column.

It is important to note that while Iceberg supports hidden partitioning, Flink has no
support for partitioning on columns by function. Therefore, there is no support for
hidden partitions when using the Flink DDL.

CREATE TABLE.. .LIKE

There might be scenarios where you need to create a new table that mirrors the struc-
ture and properties of an existing table. Flink SQL provides a very handy command,
CREATE TABLE..LIKE, for this purpose. This command creates a new table with the
same schema, partitioning, and table properties as an existing table.

Data Definition Language Operations | 169

Say you have a table named emp with two columns, id and role, and you want to
create a new table with the same schema and properties. You can use a query such as
this:

CREATE TABLE emp_like LIKE employee;

This will create a new table, emp_like, that will have the exact same schema, parti-
tioning strategy, and properties as the emp table. This is a quick and easy way to
duplicate the structure of a table.

ALTER TABLE

Flink SQL provides statements to change the structure of an existing Iceberg table
using the ALTER TABLE statement. Here are a few examples.

To rename an Iceberg table, you can use the following query:
ALTER TABLE employee RENAME TO emp_new;

Lets say you want to change the default write format of a table named emp to avro.
Here’s how you can do so:

ALTER TABLE employee SET ('write.format.default'='avro');

DROP TABLE

To remove a table from the catalog, you can use the DROP TABLE statement:

DROP TABLE employee;

Reading Data

Flink SQL provides both batch and streaming capabilities for reading data from your
Iceberg tables. It allows for flexible execution modes, customizable query parameters,
and the ability to inspect various metadata properties associated with the tables.
In this section, we will delve into the different read operations in Iceberg using
Flink SQL.

Flink SQL Batch Read

To read batch data using Flink SQL, you should first set the execution runtime mode
to batch. Here is how you can read all data from a table named employee in batch
mode:

SET execution.runtime-mode = batch;
SELECT * FROM employee;

This query runs as a batch job and retrieves the entire dataset at once.

170 | Chapter9: Apache Flink

Flink SQL Streaming Read

If you need to process incremental data, you can utilize the Flink SQL streaming
mode by setting the execution runtime mode to streaming. Here is an example:

SET execution.runtime-mode = streaming;

SELECT * FROM employee /*+ OPTIONS('streaming'='true', 'monitor -

interval'="1s')*/ ;
Here, the SELECT statement starts reading all the records from the employee
table’s current snapshot and then continues to read incremental data. The /*+
OPTIONS('streaming'='true', 'monitor-interval'='1s')*/ is an SQL hint. In
Flink, SQL hints are optional instructions placed within an SQL statement that
provide additional information to the SQL planner to change the execution plan. In
this case, we specify that the query should be executed in streaming mode and that
the monitor interval should be set to 1s, which means Flink will check the Iceberg
table every second for any new data or changes.

Metadata Table

To gain insights into your table’s historical data, snapshot details, and overall health,
such as understanding the number of small files or orphan files the table contains,
Iceberg provides metadata tables. These metadata tables can be accessed by append-
ing a $ followed by the metadata table name in Flink SQL. Let’s take a look at a few of
these metadata tables.

History

The history metadata table allows you to view the evolution of your table over time.
You can access this table using the following statement:

SELECT * FROM ‘catalog'. database’. table S$history;

The result is a history of the table, which can help you understand whether any of the
transactions were rolled back, among other things.

Metadata logs

Metadata logs keep track of all the metadata files, including information such as the
latest_snapshot_id and latest_schema_id, as well as the timestamp. Here is how
to query a metadata log table:

SELECT * FROM ‘catalog'. database’. table $metadata_log_entries;

ReadingData | 171

Snapshots

To get information about the snapshots in the Iceberg table, you can query the
snapshots metadata table. Here is an example:

SELECT * FROM ‘catalog'. database’. table $snapshots;

This table gives you information such as the number of added or deleted records after
any write operation and the Flink job ID.

There are also other available metadata tables, such as manifests and partitions. These
and others are covered in depth in Chapter 10.

Writing Data

Flink SQL provides a variety of write operations, such as INSERT INTO, INSERT
OVERWRITE, and UPSERT, for Apache Iceberg tables. These operations can be utilized
in both batch and streaming modes with certain limitations. Let’s look at these
operations.

INSERT INTO

The INSERT INTO command is used to append new data to an Iceberg table. Here are
a few examples:

INSERT INTO employee VALUES (1, 'Software Engineer', 'Engineering', 25000, 'NA');

INSERT INTO employee SELECT id, role from emp_new;

The first query inserts a single row into the employee table in the selected Iceberg
catalog. The second query inserts id and role field values by selecting the id and the
role from a different table, emp_new.

INSERT INTO is supported in both the batch and streaming modes of Flink SQL.

INSERT OVERWRITE

To replace data in a table with the result of a query, INSERT OVERWRITE is used in
Flink SQL. Since overwrites are atomic operations in Apache Iceberg, they provide
data consistency when executing such queries.

Here is an example of using INSERT OVERWRITE in a batch job:

INSERT OVERWRITE employee VALUES (1, 'Software Tester', 'Engineering', 23000,
"NA');

The preceding query replaces all the existing data in the emp table with the row specified.

172 | Chapter9: Apache Flink

Iceberg also allows you to overwrite specific partitions by selecting values. Let’s say
your employee table is partitioned by department and you want to make some
updates specifically for the employees in the Engineering department. You can do so
in Flink SQL using the following query:
INSERT OVERWRITE employee PARTITION(department='Engineering') SELECT * FROM upda
ted_emp_data WHERE department='Engineering';
This query will take the records from the updated_emp_data table for employees
in the Engineering department and overwrite the corresponding partition in the
employee table.

Note that INSERT OVERWRITE is only supported in batch mode, not streaming mode.

UPSERT

Apache Iceberg supports UPSERT, a combination of INSERT and UPDATE. If the record
exists, it will be updated, and if it doesn't, it will just be inserted as a new record.
This is similar to the MERGE INTO operation discussed for engines such as Spark and
Dremio. Note that you need a primary identifier in the table to execute this operation.
There are two ways to do an UPSERT.

First, you can enable UPSERT mode as a table-level property, as shown in the following
example:
CREATE TABLE employee (
*id® INT UNIQUE,
‘role’ STRING NOT NULL,
“department” STRING NOT NULL,
‘salary’ FLOAT,
‘region’ STRING NOT NULL,
PRIMARY KEY('id') NOT ENFORCED
) WITH ('format-version'='2', 'write.upsert.enabled'="true');

Here, UPSERT mode is set when you create the table and will be applied to both batch
and stream modes unless the property is overwritten by the second approach.

You can then do an INSERT INTO, and based on the primary identifier of the table,
Iceberg will decide whether it has to do an update or an insert, as shown in the
following example:

INSERT INTO employee VALUES (1, 'Director', 'Product', 33000, 'APAC');

Alternatively, you can enable UPSERT mode using upsert-enabled in write options.

In this approach, UPSERT mode is enabled for specific INSERT operations, which offers
more flexibility. Here is an example:

INSERT INTO employee /*+ OPTIONS('upsert-enabled'='true') */ VALUES (3, 'Mana
ger', 'Engineering', 26000, 'NA');

WritingData | 173

Flink DataFrame and Table APl with
Apache Iceberg Tables

In the previous section, we went through a couple of exercises to explore how to
do operations such as executing DDL statements and reading and writing data using
Flink SQL. In this section, we will discuss how to leverage the DataFrame and Table
APIs using Java, and we'll do some basic operations with Apache Iceberg tables.

Prerequisites

Like before, you will first need to download Apache Flink and all the required JAR
files for your configuration. Here is a list of the JAR files we will be using with
the Maven download links (note that these are the stable versions as of writing the
chapter). Keep in mind that if you are using the alexmerced/flink-iceberg Docker
image as per this exercise, all these JARs are already inside the image:

o Iceberg-flink-runtime-1.16-1.3.0.jar (Iceberg-Flink runtime)
o Hadoop-common-2.8.3.jar (Hadoop common classes)
o Flink-shaded-hadoop-2-uber-2.8.3-10.0.jar (Hadoop AWS classes)
o Bundle-2.20.18.jar (AWS bundled classes)
You will also want to make sure you have Java 8+ and Maven installed. If youd like to

create a local Flink environment for the following exercise, please refer to the book’s
GitHub repository.

Configuring the Flink Job

The first step is to create an empty Maven project. To do so, use the following
command:

mvn archetype:generate

There will be several prompts around the project that you can skip by hitting Enter.
You will input the artifactID as flink_job and the groupID as com.my_flink_job.
The artifactID will be the name of your project.

Your project directory will look something like Figure 9-1 after the build is successful.

174 | Chapter9: Apache Flink

https://oreil.ly/HKUhy
https://oreil.ly/MJyfc
https://oreil.ly/s5TnM
https://oreil.ly/KerlT
https://oreil.ly/supp-guide-apache-iceberg-ch9
https://oreil.ly/supp-guide-apache-iceberg-ch9

docker-compose.yaml]

finkjob |

pom.xml

—

—[main]
I—[java]
I—[my_flink_job]
L{

Appva |
— test]
|—[java]
{_em)
l—[my_flink_job]
I_[

AppTestjava

Figure 9-1. The file structure after creating a blank Maven project

Note the following regarding the files listed in Figure 9-1:

o The pom.xml file is where you will define your projects dependencies and
plug-ins.

o The App.java file will contain your application logic.
o The AppTest.java file will be used for unit testing.

Since you will be importing a couple of libraries in your application, you will need
to specify them in the pom.xml file so that Maven can automatically download and
include them during the project’s build process. Here is a snippet:

<dependencies>
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-java</artifactId>
<version>1.16.1</version>
</dependency>

Flink DataFrame and Table APl with Apache Iceberg Tables | 175

<dependency>
<groupId>org.apache.iceberg</groupId>
<artifactId>iceberg-flink-runtime-1.16</artifactId>
<version>1.3.0</version>

</dependency>

<dependency>

<groupId>org.apache.iceberg</groupId>
<artifactId>iceberg-core</artifactId>
<version>1.3.0</version>

</dependency>

Additionally, you will need to ensure that the Maven compiler properties are set to 1.8
Java 8 or to the proper number if using a different Java version:

<properties>
<project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
<maven.compiler.source>1.8</maven.compiler.source>
<maven.compiler.target>1.8</maven.compiler.target>

</properties>

Next, you'll create a class called EmployeeData in the same folder as App.java, which
will serve as a schema to map your data for further processing. This class includes a
few getter and setter methods, as shown in the following code:

package com.my_flink_job;

public class EmployeeData {
private Long 1id;
private String department;
private Long salary;

public EmployeeData() {
}

public EmployeeData(Long id, String department, Long salary) {
this.id = id;
this.department = department;
this.salary = salary;

}

public Long getId() {
return id;

}

public void setId(Long id) {
this.id = id;
}

public String getDepartment() {
return department;

}

public void setDepartment(String department) {

176 | Chapter9: Apache Flink

this.department = department;

}

public Long getSalary() {
return salary;

}

public void setSalary(Long salary) {
this.salary = salary;
}
}

Finally, you'll write the logic for the App.java file, which will utilize Flink’s Data-
Stream and Table APIs to create an Iceberg catalog and a table and insert a few
records. Here is an abbreviated version of the code (to see the full code for App.java,
visit the book’s GitHub repository):

public class App
{

public static void main(String[] args) throws Exception {

// setup environment

/) ...

// create the Nessie catalog
tableEnv.executeSql(
"CREATE CATALOG iceberg WITH ("
+ "'type'='iceberg',"
+ "'catalog-impl'='org.apache.iceberg.nessie.
NessieCatalog',"

+ "'"{o-impl'='org.apache.iceberg.aws.s3.S3FilelI0"',
+ "'uri'='http://catalog:19120/api/v1',"

+ "'authentication.type'="none',"

+ "'ref'="main',"

+ "'client.assume-role.region'="'us-east-1',"

+ "'warehouse' = 's3://warehouse',"

+ "'s3.endpoint'="http://{id-address}:9000""
+"";

// Set the current catalog to the new catalog
tableEnv.useCatalog("iceberg");

// Create a database in the current catalog
tableEnv.executeSql("CREATE DATABASE IF NOT EXISTS db");

// create the table
tableEnv.executeSql(
"CREATE TABLE IF NOT EXISTS db.employees ("
+ "id BIGINT COMMENT 'unique id',"
"department STRING,"
"salary BIGINT"
")

+ + 4+

Flink DataFrame and Table APl with Apache Iceberg Tables | 177

https://oreil.ly/supp-guide-apache-iceberg

// Setup Sample Data
// ...

// write the DataStream to the table
tableEnv.executeSql(
"INSERT INTO db.employees SELECT * FROM my_datastream");

}

The preceding code creates a StreamExecutionEnvironment, env, that sets up the
Flink job and the computation environment. Then a StreamTableEnvironment,
tableEnv, is created that allows you to work with both Flink’s DataStream and Table
APIs and enables you to convert between the two (as shown in the code). Here, the
table environment is used to execute SQL statements such as creating an Iceberg
catalog, database, and table.

One last thing to do before you build the package and run the job is to provide the IP
address in the CREATE CATALOG section. To get the IP address, start the cluster. This is
necessary if you are running docker-compose setup as mentioned at the beginning
of the exercise. If you have a Nessie server deployed with a static IP address or under
a domain name, you can just use that as your URI. In this case, we are determining
the IP address of the Nessie container in the Docker network.

Starting the Cluster and Building the Package

To spin up your environment, just open your shell/terminal environment and run the
docker-compose up command.

Once all your configurations are set up correctly, you can connect to the storage
container’s shell with docker exec -it storage /bin/bash and then use ifconfig
to find the IP address.

From the output, copy the inet value of eth@. You will use this value to update your
catalog configuration. Here’s how your updated code would look:

"'s3.endpoint'="http://172.27.0.4:9000""

Finally, build the Maven package by traversing to the directory where the pom.xml
file exists and running the mvn package command. The expected output of this build
is the flink_job-1.0-SNAPSHOT jar file generated under the /target directory. This is
the file that you will need to use to submit a Flink job to do all sorts of Iceberg
operations defined in your code.

178 | Chapter9: Apache Flink

Running the Job

Apache Flink provides a web interface that you can see in your browser from local
host:8081. This UI allows you to manage all things related to a Flink job, including
submitting jobs, checking job status, and analyzing logs. To submit and run your job
from the UI, click Submit New Job and then click Add New to upload the JAR file.
Under Entry Class, enter com.my_flink_job.App (the name of your package) and hit
Submit.

You can also check the job status from the web UT.

The records should be inserted in your Apache Iceberg table and be queryable with a
query engine of your choice.

Conclusion

Using the information covered in this chapter, you should be able to begin taking
advantage of Apache Iceberg in your Flink jobs to read and write streaming and batch
data. You have learned how to write a basic Apache Iceberg Flink job, the different
types of read and write transactions available, and how to configure the jobs for
streaming or batch jobs.

Conclusion | 179

PART lli
Apache Iceberg in Practice

Using Apache Iceberg as part of your data platform goes beyond the ability to
read and write data. You also want to be able to observe your tables’ health via its
metadata, version your data to isolate ingestion and handle disaster recovery, migrate
your existing data to Iceberg, and use Iceberg in several typical use cases. This part of
the book aims to guide you through tools and practices you should take advantage of
as an Iceberg practitioner.

CHAPTER 10
Apache Iceberg in Production

Data engineers are responsible for collecting, storing, and processing data in a way
that is efficient, reliable, and secure. When putting data into production, they need
to follow a set of best practices to ensure that the data is accurate, consistent, and
accessible. In this chapter, we will discuss many of the tools that can be used to
help monitor and maintain Apache Iceberg tables in production. We will start with a
discussion of Apache Iceberg metadata tables, which you can use to better understand
your Iceberg tables. Then we will cover ways to ensure data quality, including branch-
ing to isolate ingestion at the table or catalog level; catalog versioning to carry out
multitable transactions; and rolling back the state of a table or catalog when things
g0 wrong.

All the practices discussed in this chapter can be applied in reactive or proactive ways.
A reactive approach means reacting to situations that already exist, such as rewriting
a partition that has already become too large or rolling back a table that has already
ingested bad data.

Proactive techniques attempt to prevent problems like these in the first place and
include monitoring partition sizes before they affect query performance using meta-
data tables, and using branching to isolate ingestion so that no bad data makes it into
production before quality checks have occurred.

You will want to apply both approaches so that you can prevent problems from
occurring and address problems that sneak through. The techniques in this chapter
should help you in both cases.

183

Apache Iceberg Metadata Tables

One of the most powerful features of Apache Iceberg is that from its robust metadata,
several metadata tables can be generated that can be used to help monitor the health
of the table and diagnose where bottlenecks may exist.

In the past, to see table data with formats such as Hive, youd have to depend on a
particular engine implementing one-off commands, such as SHOW PARTITIONS. Since
Apache Iceberg exposes this data as traditional SQL supporting tables, you get the full
power of SQL when working with these tables, allowing for sorts, aggregations, joins,
and anything else possible with SQL, even time travel.

SELECT * FROM catalog.table.history AS OF VERSION 1059035530770364194

These tables are generated from the metadata across Apache Iceberg metadata files
at query time. Let’s first go over the metadata tables that exist and their schemas and
then discuss novel ways they can be used to monitor your Apache Iceberg tables.
Keep in mind that the metadata tables built into Apache Iceberg are accessible using
slightly different syntax depending on the query engine you are using. We will use the
Spark, Dremio, and Trino syntax for each applicable metadata table.

As we go through the metadata tables, you'll be able to see an overview of the schema in
this text. In the book’s GitHub repository we have also provided sample table data.

The history Metadata Table

The history metadata table records the table’s evolution. Each of the four fields in
this table provides unique insights into the table’s history.

The first field, made_current_at, represents the exact timestamp when the corre-
sponding snapshot was made the current snapshot. This gives you a precise temporal
marker for when changes to the table were committed.

Next, the snapshot_1id field serves as a unique identifier for each snapshot. This
identifier enables you to track and reference specific snapshots within the table’s
history.

Following this, the parent_1id field provides the unique ID of the parent snapshot
of the current snapshot. This effectively maps out the lineage of each snapshot, thus
facilitating the tracking of the table’s evolution over time.

Finally, the is_current_ancestor field indicates whether a snapshot is an ancestor
of the table’s current snapshot. This boolean value (true or false) helps identify
snapshots that are part of the table’s present state lineage and those that have been
invalidated from table rollbacks.

Table 10-1 lays out the schema of the history metadata table.

184 | Chapter 10: Apache Iceberg in Production

https://oreil.ly/supp-guide-apache-iceberg

Table 10-1. Schema of the history metadata table

Field name Data type Example value
made_current_at Timestamp 2023-02-08 03:29:51.215
snapshot_1id Int 5179289226185056830
parent_id Intornull 5781947345336215154

is_current_ancestor Boolean true

You can use the history metadata table for data recovery and version control as well
as to identify table rollbacks.

With a snapshot ID, you can restore your data and minimize potential data loss. In
case of any issues or errors, users can retrieve earlier versions of the data by referring
to the snapshot history. You can just query the table to get the snapshot prior to the
disaster you want to recover from. Then you can use the snapshot ID to roll back the
table using one of the methods discussed later in this chapter.

In the following code snippet, we run a query to get the snapshot_id from all
snapshots prior to July 11, which we can use to roll back the table to a snapshot
before any incident that occurred on that date. Rollbacks will be discussed later in this
book.

SELECT snapshot_1id

FROM catalog.table.metadata_log_entries

WHERE made_current_at < '2023-07-11 00:00:00'

ORDER BY made_current_at ASC
The data from this table can be used to identify a rollback of the table. This can be
useful to identify when recovery actions have been taken when trying to build context
for the table’s history. There are two signals to look for in the history table to identify
a table rollback:

o Two or more snapshots have the same parent_id.

o Only one of those snapshots has is_current_ancestor set to true (true would
mean it’s part of the current table history).

For example, based on the table information provided earlier, it can be infer-
red that there was a rollback in the table’s history at the given snapshot IDs
(296410040247533565 and 2999875608062437345). This conclusion is drawn from
the fact that snapshot 296410040247533565 is not a current ancestor and shares a
parent with snapshot 2999875608062437345.

Apache Iceberg Metadata Tables | 185

The following code snippet shows how to query all entries from the history meta-
data table:

-- Spark SQL
SELECT * FROM my_catalog.table.history;

-- Dremio
SELECT * FROM TABLE(table_history('catalog.table'))

-- Trino
SELECT * FROM "tableS$history"

The metadata_log_entries Metadata Table

The metadata_log_entries metadata table keeps track of the evolution of the table
by logging the metadata files generated during table updates. Each field within this
table holds significant information about the state of the table at a given point in time.

The timestamp field records the exact date and time when the metadata was updated.
This timestamp serves as a temporal marker for the state of the table at that specific
moment.

Next, the file field indicates the location of the datafile that corresponds to that
particular metadata log entry. This location acts as a reference point to access the
actual data associated with the metadata entry.

The latest_snapshot_id field provides the identifier of the most recent snapshot at
the time of the metadata update. It is a useful reference point for understanding the
state of the data when the metadata was updated.

Following that, the latest_schema_1id field contains the ID of the schema being used
when the metadata log entry was created. This gives context about the structure of the
data at the time of the metadata update.

Finally, the latest_sequence_number field signifies the order of the metadata
updates. It’s an incrementing count that helps track the sequence of metadata changes
over time.

Table 10-2 lays out the schema of the metadata-log-entries table.

Table 10-2. Schema of the metadata-log-entries metadata table

Field name Datatype Example value

timestamp Timestamp 2023-07-28 10:43:57.487
file String ..Jvl.metadata.json
latest_snapshot_1id Int 180260833656645300
latest_schema_id Int 0
latest_sequence_number Int 1

186 | Chapter 10: Apache Iceberg in Production

You can use the metadata_log_-entries metadata table to find the latest snapshot
with a previous schema. For example, maybe you made a change to the schema
and now you want to go back to the previous schema. You'll want to find the latest
snapshot using that schema, which can be determined with a query that will rank the
snapshots for each schema_1d and then return only the top-ranked snapshot for each:

WITH Ranked_Entries AS (
SELECT
latest_snapshot_id,
latest_schema_1id,
timestamp,
ROW_NUMBER() OVER(PARTITION BY latest_schema_id ORDER BY timestamp
DESC) as row_num

FROM
catalog.table.metadata_log_entries
WHERE
latest_schema_id IS NOT NULL
)
SELECT
latest_snapshot_id,
latest_schema_1id,
timestamp AS latest_timestamp
FROM
Ranked_Entries
WHERE
row_num = 1
ORDER BY

latest_schema_id DESC;
The following code snippet will query all entries from this table:

-- Spark SQL
SELECT * FROM my_catalog.table.metadata_log_entries;

The snapshots Metadata Table

The snapshots metadata table is essential for tracking dataset versions and histories.
It maintains metadata about every snapshot for a given table, representing a consis-
tent view of the dataset at a specific time. The details about each snapshot serve as
a historical record of changes and portray the state of the dataset at the snapshot’s
creation. The table includes several fields, each with a unique role.

First, the committed_at field signifies the precise timestamp when the snapshot was
created, giving an indication of when the snapshot and its associated data state were
committed.

The snapshot_id field is a unique identifier for each snapshot. This field is crucial
for distinguishing between the different snapshots and for specific operations such as
snapshot retrieval or deletion.

Apache Iceberg Metadata Tables | 187

The operation field lists a string of the types of operations that occurred, such as
APPEND and OVERWRITE.

The parent_id field links to the snapshot ID of the snapshot’s parent, providing
context about the lineage of snapshots and allowing for the reconstruction of a
historical sequence of snapshots.

Further, the manifest_list field offers detailed insights into the files comprising the
snapshot. It’s like a directory or inventory that keeps a record of all the datafiles
associated with a given snapshot.

Lastly, the summary field holds metrics about the snapshot, such as the number of
added or deleted files, number of records, and other statistical data that provides a
quick glance into the snapshot’s content.

Table 10-3 summarizes the schema for the snapshots metadata table.

Table 10-3. Schema of the snapshots metadata table

Field name Data type Example value

committed_at Timestamp 2023-02-08 03:29:51.215

snapshot_1id Int 57897183625154

parent_id Intornull NULL

operation String append

manifest_list String ../table/metadata/snap-57897183999154-1.avro

summary Map/struct { added-records -> 400404, total-records -> 3000000,

added-data-files -> 300, total-data-files -> 500,
spark.app.id -> application_1520379268916_155055 }

There are many possible ways to use the snapshots metadata table. One use case is to
understand the pattern of data additions to the table. This could be useful in capacity
planning or understanding data growth over time. Here is an SQL query that shows
the total records added at each snapshot:

SELECT

committed_at,

snapshot_1id,

summary['added-records'] AS added_records
FROM

catalog.table.snapshots;

Another use case for the snapshots metadata table is to monitor the types and
frequency of operations performed on the table over time. This could be useful for
understanding the workload and usage patterns of the table. Here is an SQL query
that shows the count of each operation type over time:

188 | Chapter 10: Apache Iceberg in Production

SELECT
operation,
COUNT(*) AS operation_count,
DATE(committed_at) AS date
FROM
catalog.table.snapshots
GROUP BY
operation,
DATE(committed_at)
ORDER BY
date;

The snapshots metadata table in Apache Iceberg serves as a valuable resource for
managing dataset versions, supporting time-travel queries, and performing incre-
mental processing, optimization, and replication. It enables users to effectively track
changes, access historical states, and efficiently manage datasets.

The following SQL will allow you to query the snapshots table to see all of its data:

-- Spark SQL

SELECT * FROM my_catalog.table.snapshots;

-- Dremio

SELECT * FROM TABLE(table_snapshot('catalog.table')
-- Trino

SELECT * FROM "table$snapshots”

The files Metadata Table

The files metadata table showcases the current datafiles within a table and furnishes
detailed information about each of them, from their location and format to their
content and partitioning specifics.

The first field, content, represents the type of content in the file, with a 0 signifying a
datafile, 1 a position delete file, and 2 an equality delete file.

Next, file_path gives the exact location of each file. This helps facilitate access to
each datafile when needed.

The file_format field indicates the format of the datafile; for instance, whether it’s a
Parquet, Avro, or ORC file.

The spec_id field corresponds to the partition spec ID that the file adheres to,
providing a reference to how the data is partitioned.

The partition field provides a representation of the datafile’s specific partition,
indicating how the data within the file is divided for optimized access and query
performance.

The record_count field reports the number of records contained within each file,
giving a measure of the file’s data volume.

Apache Iceberg Metadata Tables | 189

The file_size_in_bytes field provides the total size of the file in bytes, while
column_sizes furnishes the sizes of the individual columns.

The value_counts, null_value_counts, and nan_value_counts fields provide the count
of non-null, null, and NaN (Not a Number) values, respectively, in each column.

The lower_bounds and upper_bounds fields hold the minimum and maximum values
in each column, providing essential insights into the data range within each file.

The key_metadata field contains implementation-specific metadata, if any exists.

The split_offsets field provides the offsets at which the file is split into smaller
segments for parallel processing.

The equality_ids and sort_order_1id fields correspond to the IDs relating to equal-
ity delete files, if any exist, and the IDs of the table’s sort order, if it has one.

Table 10-4 summarizes the schema of the files metadata table.

Table 10-4. Schema of the files metadata table

content Int 0

file_path String ../table/data/00000-3-8d6d60e8-d427-4809-bcf0-
f5d45a4aad96.parquet

file_format String PARQUET

spec_id Int 0

partition Struct {1999-01-01, 01}

record_count Int 1

file_size_in_bytes Int 597

columns_sizes Map [1 -> 90, 2 -> 62]

value_counts Map [1->1, 2 -> 1]

null_value_counts Map [1 ->0, 2 -> 0]

nan_value_counts Map []

lower_bounds Map [1->, 2 ->c]

upper_bounds Map [1->, 2 ->c]

key_metadata Binary null

split_offsets List [4]

equality_ids List null

sort_order_1id Int null

190 | Chapter 10: Apache Iceberg in Production

There are many possible use cases for the files metadata table, including determin-
ing whether a partition should be rewritten, identifying partitions that need data
repair, finding the total size of a snapshot, and getting a list of files from a previous
snapshot.

If a partition has many small files, it may be a good candidate for compaction to
improve performance, as discussed in Chapter 4. The following query can help you
break down each partition’s number of files and average file size to help identify
partitions to rewrite:

SELECT
partition,
COUNT(*) AS num_files,
AVG(file_size_in_bytes) AS avg_file_size
FROM
catalog.table.files
GROUP BY
partition
ORDER BY
num_files DESC,
avg_file_size ASC

Some fields probably shouldn’t have null values in your data. Using the files meta-
data table you can identify partitions or files that may have missing values in a
much more lightweight operation than scanning the actual data. The following query
returns the partition and filename of any files with null data in their third column:

SELECT
partition, file_path
FROM
catalog.table.files
WHERE
null_value_counts['3'] > 0
GROUP BY
partition

You can also use the files metadata table to sum all the file sizes to get a total size of
the snapshot:

SELECT sum(file_size_1in_bytes) from catalog.table.files;
Using time travel you can get the list of files from a previous snapshot:

SELECT file_path, file_size_1in_bytes
FROM catalog.table.files
VERSION AS OF <snapshot_id>;

Apache Iceberg Metadata Tables | 191

The files metadata table in Apache Iceberg offers detailed information about indi-
vidual datafiles, enabling granular data processing, schema management, lineage
tracking, and data quality assurance. It serves as a valuable resource for various
use cases, empowering users with enhanced data understanding and control. The
following SQL allows you to pull up the data in the files table:

-- Spark SQL

SELECT * FROM my_catalog.table.files;

-- Dremio

SELECT * FROM TABLE(table_files('catalog.table')

-- Trino
SELECT * FROM "tableS$files"

The manifests Metadata Table

The manifests metadata table details each of the table’s current manifest files. This
table offers an array of useful information that assists in understanding the table’s
structure and changes over time.

The path field provides the filepath where the manifest is stored, enabling quick

access to the file. The length field, on the other hand, shows the size of the manifest
file.

The partition_spec_1id field indicates the specification ID of the partition that the
manifest file is associated with, which is valuable for tracking changes in partitioned
tables. The added_snapshot_1id field provides the ID of the snapshot that added this
manifest file, offering a link between snapshots and manifests.

Three count fields—added_data_files_count, existing_data_files_count, and
deleted_data_files_count—respectively relay the number of new files added in
this manifest, the number of existing datafiles that were added in previous snapshots,
and the number of files deleted in this manifest. This trio of fields is instrumental in
understanding the evolution of the data.

Lastly, the partition_summaries field is an array of field_summary structs that
summarize partition-level statistics. It contains the following information: con
tains_null, contains_nan, lower_bound, and upper_bound. These fields indicate
whether the partition contains null or NaN values, and they provide the lower and
upper bounds of data within the partition. It's important to note that contains_nan
could return null when the information isn’t available from the file’s metadata, which
usually occurs when reading from a V1 table. Table 10-5 summarizes the schema for
the manifests metadata table.

192 | Chapter 10: Apache Iceberg in Production

Table 10-5. Schema of the manifests metadata table

Field name Data type Example value

path String ../table/metadata/45b5290b-ee61-4788-b324-
b1e2735c0e10-m0O.avro

length Int 4479

partition_spec_id Int 0

added_snapshot_1id Int 6668963634911763636

added_data_files_count Int 8

existing_data_files_count Int 0

deleted_data_files_count Int 0

partition_summaries List [[false,null,2019-05-13,2019-05-15]]

With the manifests metadata table, users can perform various operations, including
finding manifests that need rewriting, summing the total number of files added per
snapshot, finding snapshots where files were deleted, and determining whether the
table is sorted well.

With the following query, you can find which manifests are below the average size of
manifest files, which can help you discover which manifests can be compacted with
rewrite_manifests:

WITH avg_length AS (
SELECT AVG(length) as average_manifest_length
FROM catalog.table.manifests

)

SELECT
path,
length
FROM
catalog.table.manifests
WHERE
length < (SELECT average_manifest_length FROM avg_length);

You may be curious about the pace of file growth in your table. With this query, you
can see how many files were added for each snapshot:

SELECT

added_snapshot_1id,

SUM(added_data_files_count) AS total_added_data_files
FROM

catalog.table.manifests
GROUP BY

added_snapshot_id;

Apache Iceberg Metadata Tables | 193

Perhaps you want to monitor your deletion patterns for the purposes of complying
with requests to clean personal identifiable information (PII). Knowing which snap-
shots have deletes can help you monitor which snapshots may need expiration to
hard-delete the data:

SELECT

added_snapshot_1id
FROM

catalog.table.manifests
WHERE

deleted_data_files_count > 0;

The following code snippet examines the manifest’s upper and lower bounds to see
whether they are sorted well or should be rewritten for better clustering:

SELECT path, partition_summaries
FROM db.table.manifests;

The manifests metadata table can also play a role in managing, analyzing, and
optimizing datasets stored in Apache Iceberg:

-- Spark SQL

SELECT * FROM my_catalog.table.manifests;

-- Dremio

SELECT * FROM TABLE(table_manifests('catalog.table')

-- Spark SQL

SELECT * FROM "tableS$manifests"

The partitions Metadata Table

The partitions metadata table in Apache Iceberg provides a snapshot of how the
data in a table is divided into distinct, nonoverlapping regions, known as partitions.
Each row represents a specific partition within the table.

The first field, partition, represents the actual partition values, usually based on
certain columns of your data. This allows your data to be organized in a meaningful
way and enables efficient query processing as data can be retrieved based on specific
partition values.

Next is the record_count field, which indicates the total number of records within
a given partition. This metric can be helpful in understanding data distribution
across the partitions and can guide optimization strategies such as repartitioning and
rebalancing.

The file_count field gives the total number of datafiles present in the partition.
It’s crucial in managing and optimizing storage, as having too many small files can
impact query performance.

Finally, the spec_id field corresponds to the ID of the partition specification used
to generate this partition. Partition specifications define how the data is split into

194 | Chapter 10: Apache Iceberg in Production

partitions, and having the ID readily available aids in understanding the partitioning
strategy used.

It's worth noting that for unpartitioned tables, the partitions metadata table will
have a single record that will contain only the record_count and file_count fields,
as no partitioning is applied to such tables. Also included are delete file record counts
and file counts in the position_delete_record_count, position_delete_file_count,
equality_delete_record_count, and equality_delete_file_count fields, respectively.

While the partitions metadata table provides a snapshot of the current state of
partitions, it’s important to note that delete files are not applied. As a result, in certain
scenarios, partitions may be listed even though all their data rows have been marked
for deletion by delete files. Table 10-6 summarizes the schema of the partitions
metadata table.

Table 10-6. Schema of the partitions metadata table

Field name Data type Example value

partition List {20211001, 11}
spec_1id Int 0
record_count Int 1
file_count Int 1
position_delete_record_count Int 0
position_delete_file_count Int 0
equality_delete_record_count Int 0
equality_delete_record_count Int 0

There are many use cases for the partitions metadata table, including finding
how many files are in a partition, summing the total size in bytes of a partition,
and finding the number of partitions per partition scheme. For instance, you may
want to see how many files are in a partition, because if a particular partition has
a large number of files, it may be a candidate for compaction. The following code
accomplishes this:

SELECT partition, file_count FROM catalog.table.partitions

Along with looking at the number of files, you may want to look at the size of the
partition. If one partition is particularly large, you may want to alter your partitioning
scheme to better balance out distribution, as shown here:
SELECT partition, SUM(file_size_in_bytes) AS partition_size FROM cata
log.table.files GROUP BY partition
With partition evolution, you may have different partitioning schemes over time. If
youre curious how different partitioning schemes affected the number of partitions
for the data written with it, the following query should be helpful:

Apache Iceberg Metadata Tables | 195

SELECT

spec_id,

COUNT(*) as partition_count
FROM

catalog.table.partitions
GROUP BY

spec_1id;

-- Spark SQL

SELECT * FROM my_catalog.table.partitions;
- Trino

SELECT * FROM "test_table$partitions”

The all_data_files Metadata Table

The all_data_files metadata table in Apache Iceberg provides comprehensive
details about every datafile across all valid snapshots in the table.

The first field, content, signifies the type of the file. A value of 0 indicates a datafile, 1
a position delete file, and 2 an equality delete file.

The file_path field is a string that represents the complete path to the datafile. This
usually includes the storage system location (e.g., s3://my-bucket/folder/subfolder/
myfile.xyz), the table name, and the unique file identifier.

The file_format field indicates the format of the datafile. In our example, it's Par-
quet, but it could be another file format such as AVRO or ORC.

The spec_id field corresponds to the ID of the partition specification used to gener-
ate this partition.

The partition field represents the partition to which this datafile belongs. It’s usually
based on the partitioning scheme defined for the table.

The record_count field gives the total number of records within the file, while
file_size_in_bytes represents the size of the datafile in bytes. Both metrics are
essential for understanding the volume of data and can be used in query optimization
strategies.

The column_sizes field provides a map between the column ID and the size of that
column in bytes.

The value_counts field gives a map that represents the total count of values for each
column in the datafile. Similarly, null_value_counts and nan_value_counts provide
a count of null and NaN values for each column, respectively.

The lower_bounds and upper_bounds fields are maps that store the minimum and
maximum values for each column in the datafile. These fields are instrumental in
pruning data during query execution.

196 | Chapter 10: Apache Iceberg in Production

The key_metadata field contains implementation-specific metadata.

The split_offsets field provides information about split points within the file. It’s
an array of long values and is especially useful in distributed processing scenarios,
where datafiles can be split into smaller chunks for parallel processing.

The equality_ids field relates to equality deletes and helps in identifying rows
deleted by equality deletes.

The sort_order_1id field contains the ID of the sort order used to write the datafile.

The readable_metrics field is a derived field that provides a human-readable repre-
sentation of the file’s metadata including column size, value counts, null counts, and
lower and upper bounds.

Remember, the all_data_files metadata table may produce more than one row per
datafile because a file could be part of multiple table snapshots. This table helps in
understanding the state and organization of your data at a granular level. Table 10-7
summarizes the schema of the all_data_f1iles metadata table.

Table 10-7. Schema of the all_data_files metadata table

content Int 0

file_path String ../dt=20210103/00000-0-26222098-032f-472b-8ea5. ..
file_format String PARQUET

spec_id Int 0

partition List {20210102}

record_count Int 14

file_size_in_bytes Int 2444

column_sizes Map {1 ->94, 2 -> 17}

value_counts Map {1 -> 14, 2 -> 14}

null_value_counts Map {1 ->0, 2 -> 0}

nan_value_counts Map {1 ->0, 2 -> 0}

lower_bounds Map {1 ->1, 2 -> 20210102}

upper_bounds Map {1 -> 2, 2 -> 20210102}

key_metadata Binary NULL

split_offsets List [4]

equality_ids List NULL

sort_order_id Int 0

readable_metrics List {{48, 2, 0, null, Benjamin, Brandon}}

Apache Iceberg Metadata Tables | 197

There are many use cases for the all_data_files metadata table, including finding
the largest table across all snapshots, finding the total file size across all snapshots,
and assessing partitions across snapshots.

The following query first makes sure you have only distinct files since the same file
can have multiple records. It then returns the five largest files from that list of distinct
files:

WITH distinct_files AS (
SELECT DISTINCT file_path, file_size_in_bytes
FROM catalog.table.all_data_files

)

SELECT file_path, file_size_1in_bytes

FROM distinct_files

ORDER BY file_size_in_bytes DESC

LIMIT 5;

If you want to see a total picture of the number of files, the size of those files, and the
number of records you have across all snapshots, you can run this query:

WITH unique_files AS (
SELECT DISTINCT file_path, record_count, file_size_in_bytes
FROM catalog.table.all_data_files
)
SELECT COUNT(*) as num_unique_files,
SUM(record_count) as total_records,
SUM(file_size_1in_bytes) as total_file_size
FROM unique_files;

With the following query you can see the number of files, number of records, and
total file size of each partition across all snapshots. You can use this information to
help understand your data storage status by partition:

WITH unique_files AS (
SELECT DISTINCT file_path, partition, record_count, file_size_in_bytes
FROM catalog.table.all_data_files
)
SELECT partition,
COUNT(*) as num_unique_files,
SUM(record_count) as total_records,
SUM(file_size_1in_bytes) as total_file_size
FROM unique_files
GROUP BY partition;

-- Spark SQL for All Data Files
SELECT * FROM my_catalog.table.all_data_files;

The all_manifests Metadata Table

The all_manifests metadata table in Apache Iceberg provides detailed insights into
every manifest file across all valid snapshots in the table.

198 | Chapter 10: Apache Iceberg in Production

The first field, content, signifies the type of the file, similar to the all_data_files
table. A value of 0 indicates the manifest tracks datafiles; a value of 1 indicates that it
tracks delete files.

The path field is a string representing the complete path to the manifest file. Like
the all_data_f1iles table, this includes the storage system location (e.g., s3://...), the
table name, and a unique file identifier.

The length field represents the size of the manifest file in bytes. This can provide
insights into the volume of metadata stored in the manifest.

The partition_spec_1id field corresponds to the ID of the partition specification
used to write this manifest file. This indicates how the datafiles listed in the manifest
are partitioned.

The added_snapshot_id field represents the ID of the snapshot when the manifest
was created.

The added_data_files_count, existing_data_files_count, and deleted_data_
files_count fields provide a summary of the changes in datafiles that this manifest
file represents. The added_delete_files_count, existing_delete_files_count,
and deleted_delete_files_count fields provide a similar summary for delete files.

The partition_summaries field is an array of structures, where each structure pro-
vides a summary for a specific partition in the manifest file. Each structure indicates
whether the partition contains null or NaN values, as well as the lower and upper
bounds of the partition.

The reference_snapshot_id field represents the ID of the snapshot that this record
is associated with. You’ll see a manifest listed once for each snapshot it was valid for.

Remember, the all_manifests metadata table may produce more than one row
per manifest file because a manifest file may be part of multiple table snapshots.
This table helps in understanding the state and organization of your data at a more
holistic level than the all_data_files table. Table 10-8 summarizes the schema of
the all_manifests metadata table.

Table 10-8. Schema of the all_manifests metadata table

Field name Data type Example value

content Int 0

path String ../metadata/a85f78c5-3222-4b37-b7e4-
faf944425d48-m0.avro

length Int 6376

partition_spec_id Int 0

added_snapshot_1id Int 6272782676904868561

Apache Iceberg Metadata Tables | 199

added_data_files_count Int 2

existing_data_files_count Int 0

deleted_data_files_count Int 0

added_delete_files_count Int 2

existing_delete_files_count Int 0

deleted_delete_files_count Int 0

partition_summaries List [{false, false, 20210101, 20210101}]
reference_snapshot_1id Int 6272782676904868561

There are many use cases for the all_manifests metadata table, including finding
all manifests for a particular snapshot, monitoring the growth of manifests from
snapshot to snapshot, and getting the total size of all valid manifests.

While the manifests table will tell you all the manifests for the current snapshot, you
can generate this data for any snapshot using the all_manifests table with a query
such as this one:

SELECT *
FROM catalog.table.all_manifests
WHERE reference_snapshot_1id = 1059035530770364194;

The following query returns the total manifest size and datafile counts for each
snapshot to see the growth of files and manifest size from snapshot to snapshot:

SELECT reference_snapshot_id, SUM(length) as manifests_length,
SUM(added_data_files_count + existing_data_files_count)AS total_data_files
FROM catalog.table.example.all_manifests

GROUP BY reference_snapshot_id;

With this query you can get the storage being used by all valid manifests:

SELECT
SUM(length) AS total_length

FROM (
SELECT DISTINCT path, length
FROM catalog.table.all_manifests

-- Spark SQL for All Manifests
SELECT * FROM my_catalog.table.all_manifests;

The refs Metadata Table

The refs metadata table in Apache Iceberg provides a list of all the named refer-
ences within an Iceberg table. Named references can be thought of as pointers to
specific snapshots of the table data, providing an ability to bookmark or version the
table state.

200 | Chapter 10: Apache Iceberg in Production

The first field, name, represents the unique identifier for a named reference. Named
references are categorized into two types, which brings us to the second field, type.
The type can be one of two values: BRANCH, a mutable reference that can be moved to
a new snapshot; or TAG, an immutable reference that, once created, always points to
the same snapshot.

The max_reference_age_in_ms field indicates the maximum duration in milli-
seconds that a snapshot can be referenced. This age is measured from the time
the snapshot was added to the table. If the age of a snapshot exceeds this duration,
it will no longer be valid and will be a candidate for cleanup during maintenance
operations.

The min_snapshots_to_keep field provides a lower limit on the number of snapshots
to keep in the table history. The Iceberg table will always maintain at least this many
snapshots, even if they are older than the max_snapshot_age_ms setting.

Lastly, the max_snapshot_age_1in_ms field indicates the maximum age in milliseconds
for any snapshot in the table. Snapshots that exceed this age could be removed by the
maintenance operations, unless they are protected by the min_snapshots_to_keep
setting.

Remember, the refs metadata table helps you understand and manage your table’s
snapshot history and retention policy, making it a crucial part of maintaining data
versioning and ensuring that your table’s size is under control. Table 10-9 summarizes
the schema of the refs metadata table.

Table 10-9. Schema of the refs metadata table

Field name Data type Example value

name String main

type String BRANCH

snapshot_1id Int 4686954189838128572
max_reference_age_in_ms Int 10
min_snapshots_to_keep Int 20
max_snapshot_age_in_ms Int 30

There are many uses for the refs metadata table, including finding references at risk
of losing snapshots and finding the latest snapshot of a particular reference.

In addition, you may be wondering whether a particular branch’s rules may result in
the invalidation of a snapshot on its next update. This query should help filter just
references that have max snapshot rules:

SELECT name, min_snapshots_to_keep, max_snapshot_age_in_ms
FROM catalog.table.refs
WHERE min_snapshots_to_keep IS NOT NULL AND max_snapshot_age_in_ms IS NOT NULL;

Apache Iceberg Metadata Tables | 201

The following query will give you just the snapshot ID for each ref:

SELECT name, snapshot_id
FROM catalog.table.refs;

-- Spark SQL
SELECT * FROM my_catalog.table.refs;

The entries Metadata Table

The entries metadata table in Apache Iceberg offers insightful details about each
operation that has been performed on the table’s data and deletes files across all
snapshots. Each row in this table captures operations that affected many files at a
certain point in the table’s history, making it an essential resource for understanding
the evolution of your dataset.

The first field, status, is an integer that indicates whether a file was added or deleted
in the snapshot. A value of 0 represents an existing file, while 1 indicates an added file
and 2 a deleted file. This field allows you to track the lifecycle of each file, providing a
glimpse into the changes and modifications the dataset has undergone over time.

Next, snapshot_1id is the unique identifier of the snapshot in which the operation
took place. This ID allows you to connect each file operation to a particular snapshot,
which can be beneficial in tracking changes made in specific versions of the table.

The sequence_number field indicates the order of operations. This is a global counter
across all snapshots of the table, and it increments for each change made, whether the
change is an addition, a modification, or a deletion. By understanding the sequence

number, you can reconstruct the exact series of operations that led to the current state
of the table.

Finally, data_file is a struct that encapsulates extensive details about the file
involved in the operation. The struct includes fields such as the following:

file_path
The complete path to the file in the storage system

file_format
The format of the file, such as Parquet or AVRO

partition
Information about the partition the file belongs to

record_count
The total number of records in the file

file_size_1in_bytes
The size of the file in bytes

202 | Chapter 10: Apache Iceberg in Production

column_sizes
A map of the size in bytes of each column

value_counts
A map with a count of total values in each column

null_value_counts
A map with a count of null values in each column

nan_value_counts
A map with a count of NaN values in each column

lower_bounds and upper_bounds
Maps containing the minimum and maximum values of each column

key_metadata
Implementation-specific metadata

split_offsets
Information about split points within the file

By querying the entries table, you can keep track of each operation applied to
your table, offering a comprehensive audit trail of your data evolution. Table 10-10
summarizes the schema of the entries metadata table.

Table 10-10. Schema of the entries metadata table

Field name Data type Example value

status Int 1

snapshot_1id Int 1059035530770364194

sequence_number Int 0

data_file List {0, s3://...parquet, PARQUET, 0, {A}, 6, 609, {1 -> 83},

{1 -> 6}, {1 -> 0}, {}, {1 -> Adriana}, {1 -> Antonio},
null, null, null, 0}

There are many use cases for the entries metadata table, including identifying files
added in a particular snapshot, tracking changes to a file over time, and tracking table
size changes over time.

For example, the following query will find all entries that match a snapshot
representing an added file:

SELECT data_file
FROM catalog.table.entries
WHERE snapshot_id = <your_snapshot_1id> AND status = 1;

Apache Iceberg Metadata Tables | 203

This query will return all records for a particular file, whether it was existing, added,
or deleted:

SELECT snapshot_id, sequence_number, status, data_file
FROM catalog.table.entries

WHERE data_file.file_path = '<your_file_path>'

ORDER BY sequence_number ASC;

With the following query, you'll get the size of added files for each snapshot to see the
growth in storage needs across snapshots:
SELECT snapshot_id, SUM(data_file.file_size_in_bytes) as total_size_1in_bytes
FROM catalog.table.entries
WHERE status = 1

GROUP BY snapshot_id
ORDER BY snapshot_1id ASC;

-- Spark SQL
SELECT * FROM my_catalog.table.entries;

Using the Metadata Tables in Conjunction

By joining these metadata tables together, you can extract even more valuable insights
and tailor your data operations more effectively. Let’s consider a few examples of how
these metadata tables can be joined for different use cases.

Get data on all the files added in a snapshot

You can assess the data added in a snapshot to verify the right number of records
have been added, see the growth in file storage in a particular snapshot, and more. To
bring up all the file metadata for a particular snapshot, use the following query:

SELECT f.*, e.snapshot_id

FROM catalog.table.entries AS e

JOIN catalog.table.files AS f

ON e.data_file.file_path = f.file_path

WHERE e.status = 1 AND e.snapshot_1id = <your_snapshot_1id>;

Get a detailed overview of the lifecycle of a particular datafile

You may be curious when a file was added, deleted, and existed as well as about the

state of table operations at each point. Using the following query, you can build a

detailed log of a particular datafile’s history, allowing you to also see how many files

were added and deleted at each point in the file’s lifecycle. Also, using the filepath

you can identify each operation where the file was involved and use the entries and

manifests tables to gather more information and context around those operations:
SELECT e.snapshot_id, e.sequence_number, e.status, m.added_snapshot_id,

m.deleted_data_files_count, m.added_data_files_count
FROM catalog.table.entries AS e

204 | Chapter 10: Apache Iceberg in Production

JOIN catalog.table.manifests AS m

ON e.snapshot_id = m.added_snapshot_1id

WHERE e.data_file.file_path = '<your_file_path>'
ORDER BY e.sequence_number ASC;

Track the evolution of the table by partition across snapshots

You may want to see how partitions evolve across snapshots, such as how many files
are added. Here is an example query of how you can build that data view. You can use
this as the base for such assessments as the number of files added and the size of files

added by partition:

SELECT e.snapshot_id, f.partition, COUNT(*) AS files_added
FROM catalog.table.entries AS e

JOIN catalog.entries.files AS f

ON e.data_file.file_path = f.file_path

WHERE e.status = 1

GROUP BY e.snapshot_id, f.partition;

Monitor files associated with a particular branch

If you're using table branching, you may want to monitor those branches to keep
track of storage and optimization needs. With this query you can bring up the files

for the current snapshot of a particular branch:

SELECT r.name as branch_name, f.*

FROM catalog.table.refs AS r

JOIN catalog.table.entries AS e

ON r.snapshot_1id = e.snapshot_id

JOIN catalog.table.files AS f

ON e.data_file.file_path = f.file_path

WHERE r.type = 'BRANCH' AND r.name = '<your_branch_name>';

Find file differences between two branches of a table

If you want to see what files two branches don’t share, you can use this query. This

unions the results of two queries to get the unique files in both branches:

-- files in branch1 but not in branch2
SELECT 'branch1' as branch, f.*
FROM catalog.table.refs AS ri1
JOIN catalog.table.entries AS el
ON ri1.snapshot_id = el.snapshot_id
JOIN catalog.table.files AS f
ON el.data_file.file_path = f.file_path
WHERE r1.type = 'BRANCH' AND ri.name = 'branchil’
AND f.file_path NOT IN (
SELECT f2.file_path
FROM catalog.table.refs AS r2
JOIN catalog.table.entries AS e2
ON r2.snapshot_id = e2.snapshot_id
JOIN catalog.table.files AS f2

Apache Iceberg Metadata Tables

205

ON e2.data_file.file_path = f2.file_path
WHERE r2.type = 'BRANCH' AND r2.name = 'branch2'

)
UNION ALL

-- files in branch2 but not in branchi
SELECT 'branch2' as branch, f.*
FROM catalog.table.refs AS ri1
JOIN catalog.table.entries AS el
ON ri.snapshot_id = el.snapshot_1id
JOIN catalog.table.files AS f
ON el.data_file.file_path = f.file_path
WHERE r1.type = 'BRANCH' AND ril.name = 'branch2'
AND f.file_path NOT IN (
SELECT f2.file_path
FROM catalog.table.refs AS r2
JOIN catalog.table.entries AS e2
ON r2.snapshot_id = e2.snapshot_1id
JOIN catalog.table.files AS f2
ON e2.data_file.file_path = f2.file_path
WHERE r2.type = 'BRANCH' AND r2.name = 'branchi'

)

Find the growth in storage by the latest snapshot of each branch

Branches are great for isolation and experimentation, but many branches where
experimental data has been ingested over time can have storage costs you may want
to monitor. This query will allow you to see how much data was added on the current
snapshot of each branch:

SELECT r.name as branch_name, e.snapshot_id, SUM(f.file_size_1in_bytes) as
total_size_in_bytes

FROM catalog.table.refs AS r

JOIN catalog.table.entries AS e

ON r.snapshot_id = e.snapshot_id

JOIN catalog.table.files AS f

ON e.data_file.file_path = f.file_path

WHERE r.type = 'BRANCH'

GROUP BY r.name, e.snapshot_id

ORDER BY r.name, e.snapshot_1id;

Using the Apache Iceberg metadata tables, you can better monitor the state of your
tables to avoid performance bottlenecks and other issues, which helps with taking
advantage of Apache Iceberg in a production environment.

206

| Chapter 10: Apache Iceberg in Production

Isolation of Changes with Branches

The practice of isolating changes to your data in a Git-like branch can be significantly
valuable in modern data workflows, which is why more practitioners should begin
adopting it. This approach allows for the separation of different lines of work, enabling
developers to make changes independently without interfering with other developers’
work or destabilizing the main codebase. It’s akin to having multiple parallel universes,
where changes in one universe do not affect the others. You can experiment, make
mistakes, and learn without the fear of impacting the broader system.

In the context of Apache Iceberg tables, there are two ways to implement this con-
cept: at the table level, which is native to Apache Iceberg regardless of catalog; and at
the catalog level, which is possible when using the Project Nessie catalog.

The first method, isolating changes at the table level, involves creating branches for
specific tables. Each branch contains a full history of changes made to that table. This
approach allows for concurrent schema evolution, rollbacks, and other advanced use
cases. It is a powerful tool for handling table-specific changes, but it lacks the ability
to provide a holistic view of changes across the entire data catalog.

Isolating changes at the catalog level allows you to manage a complete data lake
as a single entity, capturing changes across multiple tables within a branch. Using
Nessie, you can take a snapshot of the entire catalog at a particular point in time.
This practice facilitates a more comprehensive version control strategy, enabling you
to test data transformations, track data lineage, and maintain data integrity across
multiple tables.

There are advantages and drawbacks to both methods. Table-level isolation provides
granular control and flexibility for individual tables but might become complex to
manage in a large-scale data environment. Catalog-level isolation provides a compre-
hensive, unified view of changes but might be overkill for small-scale or single-table
scenarios.

The value of isolating changes to your data on a Git-like branch is multifaceted. It
provides developers with the freedom to experiment and make changes without fear
of widespread impact, allows for version control and rollback of changes, and pro-
motes greater data integrity and lineage tracking. Whether you choose to implement
this at the table level or at the catalog level, using Project Nessie will depend on your
specific use case (ingesting data, testing in production, experimental environments)
and the complexity of your data environment.

Isolation of Changes with Branches | 207

Table Branching and Tagging

Built into the Apache Iceberg specification is the ability for the metadata to track
snapshots under different paths, known as branching, or to give particular snapshots a
name, known as tagging. This enables isolation, reproducibility, and experimentation
in your data operations with an individual table.

Table branching

Table branching in Apache Iceberg allows you to create independent lineages of snap-
shots, each with its own lifecycle. A branch is essentially a named reference pointing
to a divergent chain of snapshots. Each branch points to the head of the branch,
which is the most recent snapshot in the branch’s snapshot history. Each branch also
has settings for maximum snapshot age and minimum number of snapshots that
should exist in the branch.

Consider a data management scenario where you have a pipeline of data to be
ingested into an existing table. Before merging the data into the main table, you
want to isolate it for validation and quality checks. To achieve this isolation, you can
leverage Apache Iceberg’s branching mechanism.

In this scenario, the incoming data can be directed to a separate branch (say,
"ingestion-validation-branch") without interfering with the main table. You can
achieve this with Iceberg’s Java API using the toBranch operation while writing to
the table (the Java API consists of Java libraries that are part of the Apache Iceberg
project that enable common operations on Iceberg tables). This method isolates the
incoming data, allowing for validation and checks before it's merged with the main
table data.

Here is a Java code snippet demonstrating this process:

// Using Iceberg Java API
// String to be used as branch name
String branch = "ingestion-validation-branch";

// Create a branch
table.manageSnapshots()
// Create a branch from a particular snapshot
.createBranch(branch, 3)
// Specify how many snapshots to keep
.setMinSnapshotsToKeep(branch, 2)
// Specify max age of those snapshots
.setMaxSnapshotAgeMs(branch, 3600000)
// Set max age of branch
.setMaxRefAgeMs(branch, 604800000)
.commit();

// Write incoming data to the new branch
table.newAppend()

208 | Chapter 10: Apache Iceberg in Production

// Append incoming file to the branch
.appendFile(INCOMING_FILE)

// Specify the branch to do this operation on
.toBranch(branch)

.commit();

// Read from the branch for validation
TableScan branchRead = table
.newScan()
.useRef(branch);

The creation of "ingestion-validation-branch" allows for the testing and valida-
tion of new incoming data, making it an invaluable tool in data engineering work-
flows. Once the data on the new branch is validated and passes all the quality checks,
the main branch can be updated to the head of "ingestion-validation-branch"
using the fastForward operation:

// Updating the main branch to incorporate validated changes from the new branch
table
.manageSnapshots()
// Set that the main branch's latest commit should match the new branch
.fastForward("main", "ingestion-validation-branch")
.commit();

In this way, branching in Apache Iceberg provides an effective mechanism to isolate,
validate, and merge incoming data, thus maintaining data quality and integrity in the
main table.

To achieve the same isolation and validation workflow using SQL, you can use the
ALTER TABLE statement provided by Apache Iceberg. The first step is to create a new
branch, "ingestion-validation-branch", on your table. Let’s say youre working
with a table named sales_data in a catalog called my_catalog and a database named
my_db. The branch is configured to retain snapshots for seven days and to always
keep at least two snapshots. Here is the code to do this:

-- Create the new branch

ALTER TABLE my_catalog.my_db.sales_data
CREATE BRANCH ingestion-validation-branch
RETAIN 7 DAYS
WITH RETENTION 2 SNAPSHOTS;

Next, set the newly created branch as the active writing branch using the SET com-
mand:

-- Set the new branch to the write branch
SET spark.wap.branch = 'ingestion-validation-branch';

Now you can write your incoming data to "ingestion-validation-branch". This
isolates the new data and allows you to conduct validation and quality checks before
it is merged into the main data. The term WAP (Write Audit Publish) is a pattern

Isolation of Changes with Branches | 209

where you write the data, audit the data for quality issues, and then publish it
when complete. For this example, let’s assume you are inserting some data into the
sales_data table:

-- Write incoming data to the new branch
INSERT INTO my_catalog.my_db.sales_data (columnl, column2, column3)
VALUES (valuel, value2, value3), (value4, value5, value6);

Once youre done with any validations, you will need to use Java to run the fastFor
ward procedure.

Table tagging

While branching provides a way to create separate lineages of data, Iceberg also
provides a mechanism for tagging. Tagging in Iceberg allows for named references to
snapshots, facilitating reproducibility.

In the context of supply chain management, consider a scenario where you need
to reproduce the state of the table at the end of a quarter for auditing purposes.
Tagging enables you to retain important historical snapshots, thereby allowing state
reproduction. A tag can be created for a snapshot using the createTag operation, and
you can specify how long the tag should be retained:

// create a tag
String tag = "end-of-quarter-Q3FY23";
table.manageSnapshots()
// create a tag out of snapshot 8
.createTag(tag, 8)
// set the max age of the tag
.setMaxRefAgeMs(tag, 1000 * 60 *60 * 2486400000)
.commit();

In this example, a tag named "end-of -quarter-Q3FY23" is created at snapshot 8, and
it is retained for one day. Reading from a tag is as straightforward as passing it to the
useRef API when setting up a table scan, as shown here:

// Read from a tag
String tag = "end-of-quarter-Q3FY23";
Table tagRead = table

.newScan()

.useRef(tag);

This can also be done from SQL like so:

-- Spark SQL

-- Create a tag with a life of 14 days

ALTER TABLE catalog.db.closed_invoices
CREATE TAG 'end-of-quarter-Q3FY23'
AS OF VERSION 8
RETAIN 14 DAYS;

210 | Chapter 10: Apache Iceberg in Production

Branching and tagging together form a powerful combination for managing large
datasets. They allow for isolated testing, easier auditing, and the ability to reproduce
the state of your data at any given point in time. Whether youre handling General
Data Protection Regulation (GDPR) requirements or navigating the complexities
of supply chain management, these features of Apache Iceberg offer the flexibility
and control needed for efficient data operations. However, when dealing with many
tables, using an abstraction at the catalog level may be a better option.

Catalog Branching and Tagging

Project Nessie, often referred to as Git for data lakes, introduces powerful features
such as catalog branching and tagging to enhance your management of Apache
Iceberg tables. Essentially, Nessie facilitates a more organized approach to managing
vast amounts of data, all while preserving the integrity and consistency of your data.

What distinguishes Nessie is its ability to maintain an always-consistent view of
your data across all tables in your catalog. By isolating and independently processing
changes, Nessie ensures that users never encounter incomplete changes. Once all
changes are finalized, they can be consistently and atomically applied, enhancing the
overall data management experience.

With Nessie, keeping track of individual datafiles becomes effortless. It knows which
datafiles are in use and which ones can safely be deleted. It allows multiple environ-
ments, such as production, staging, and development, to coexist within the same data
lake without compromising the integrity of production data.

Crucially, Nessie is designed to optimize data management by avoiding unnecessary
duplication. Instead of copying data, Nessie employs a reference system to the exist-
ing immutable datafiles. This characteristic, similar to Git, enables Nessie to record
all modifications in the data lake as commits without needing to duplicate the actual
data.

One of the significant advantages of Nessie is its catalog-level versioning, which offers
conveniences over individual table versioning. When working with many tables,
managing each table’s versioning individually can become complicated and cumber-
some. In contrast, catalog-level versioning with Nessie allows you to handle many
tables simultaneously and more efficiently, greatly simplifying your data management
processes.

Let’s further explore how catalog-level branching and tagging using Nessie and
Apache Iceberg can enhance your data management strategies.

Catalog branching

Branching, an advantageous feature of Project Nessie when used alongside Apache
Iceberg, provides a secure environment for testing new data before it’s incorporated

Isolation of Changes with Branches | 211

into the catalog. By creating a new branch, you can safely ingest and validate batches
of data across multiple tables, reducing the risk of erroneous entries across your
catalog of tables.

Imagine you are working with a series of large datasets related to an ongoing
project, and you receive weekly batches of data. Instead of directly adding this
data to your catalog, you can first ingest it into a separate branch, perhaps named
"weekly_ingest_branch". This approach would allow you to validate the data before
merging it with the main production branch of your catalog.

Here’s an example of this workflow using Spark SQL:

-- Create a new branch for weekly data ingestion
CREATE BRANCH IF NOT EXISTS weekly_ingest_branch IN catalog;

-- Switch to the new branch
USE REFERENCE weekly_ingest_branch IN catalog;

-- Ingest new data into each table from the branch
INSERT INTO table_name (...);

After you've validated the data in your tables, you can merge it into the main branch:

MERGE BRANCH weekly_ingest_branch INTO main IN catalog;

(atalog tagging

Tagging in the Project Nessie catalog, paired with Apache Iceberg, allows you to mark
specific versions of your data, providing an easy way to track and reproduce states of
the data at different points in time. This can be particularly useful when conducting
quarterly analytics, where you need to reproduce data exactly as it was at the end of
each quarter.

For instance, suppose youre conducting financial analysis every quarter. By creating
tags such as Q1_end_snapshot and Q2_end_snapshot, you can easily retrieve the state
of your data at the end of each quarter. The following Spark SQL command can be
used to create these quarterly tags:

-- Create a tag for the end of the first quarter
CREATE TAG IF NOT EXISTS Q1_end_snapshot IN catalog;

To retrieve the data as it was at the end of Q1, you can switch to the following tag and
query the data:

-- Switch to the end of Q1 snapshot
USE REFERENCE Q1_end_snapshot IN catalog;

-- Query data as it was at the end of Q1
SELECT * FROM table_name;

212 | Chapter 10: Apache Iceberg in Production

Using catalog branching and tagging with Apache Iceberg and Project Nessie pro-
vides the following benefits:

Facilitates the safe and isolated testing and validation of new data batches

+ Enables easy reproduction of data at regular intervals, such as at the end of each
quarter, improving the reliability of analytics

o Assists in maintaining an audit trail of data changes over time

o Aids in identifying different versions of the table for different analytics requirements

Catalog branching and tagging are crucial features of Apache Iceberg and Project
Nessie, providing a robust and efficient way to manage and control your data tables
at the catalog level. With these tools, you can ensure accurate, reliable data ingestion
and easy reproduction of historical data for analytics.

Multitable Transactions

Multitable transactions are a fundamental concept in databases that support consis-
tency and atomicity of operations spanning multiple tables. In a multitable transac-
tion, multiple operations, possibly involving different tables, are treated as a single
atomic unit of work. This means that either all operations in the transaction succeed,
or if any operation fails, all the changes made within that transaction are rolled back,
thereby leaving the database in a consistent state.

The importance of multitable transactions primarily lies in their ability to maintain data
consistency, which is a crucial aspect of database management systems. Consider a supply
chain management system where an order placement involves updating an Orders table
and decrementing the stock in an Inventory table. If these operations were not part of
a single transaction, a failure in updating the Inventory table after the Orders table was
updated could lead to data inconsistency—the system would show an order that was
placed, but the inventory would not reflect the decrease in stock.

With multitable transactions, the entire process is treated as a single atomic opera-
tion. This means that if updating the Inventory table fails, the changes made to
the Orders table would also be rolled back, thus ensuring that the data remains
consistent.

Furthermore, multitable transactions are also essential for isolation, another key
property of reliable database systems. They ensure that concurrent transactions do
not interfere with each other, thereby avoiding potential data inconsistencies and
conflicts.

In summary, multitable transactions are vital for maintaining data consistency and
isolation in database systems. They allow multiple operations, possibly involving
different tables, to be treated as a single atomic unit of work, ensuring that either

Multitable Transactions | 213

all operations succeed or all changes are rolled back in the event of a failure. This is
especially crucial in complex systems such as supply chain management where data
integrity and consistency are paramount.

You can achieve multitable transactions using a Project Nessie catalog by branching
the catalog and then running transactions on multiple tables from the branch. All
operations from the branch, regardless of which tables, engine, or user is running the
transaction, will be isolated from the main production branch.

Once you are happy with the state of the branch and all the catalog tables, you can
then merge those changes back into the main branch as shown in the following code.
Or, if youre not happy with all of that, you can drop the branch so that none of the
changes is seen by anyone else:

-- Create a Branch
CREATE BRANCH IF NOT EXISTS etl IN catalog;

-- Switch to Branch (Spark SQL)
USE REFERENCE ingest IN catalog;

-- Run transactions on multiple tables
INSERT INTO catalog.db.tableA ...;
INSERT INTO catalog.db.tableB ...;

-- When done, merge all the transaction simultaneously in production branch
MERGE BRANCH etl INTO main IN catalog;

Rolling Back Changes

Catalog- and table-level rollbacks are crucial concepts in data management that
greatly contribute to maintaining high data quality.

Table-level rollbacks are a specific data management technique that allows changes
to a table to be reversed or “rolled back” to a previous state. This can be particularly
useful in situations where an error has occurred during data processing or when
a change has led to unexpected results. With the ability to roll back changes, its
possible to revert the data to a state of known good quality, thereby mitigating the
impact of errors or problematic changes.

Together, catalog- and table-level rollbacks offer a safeguard against errors and
changes that might adversely affect data quality. This combination makes it easier
to maintain high-quality, reliable data, which is especially important in data-intensive
fields such as data science, machine learning, and business analytics. Data quality
directly impacts the reliability of insights drawn from the data, making these concepts
critical for ensuring accurate, reliable decision making based on data.

214 | Chapter 10: Apache Iceberg in Production

Rolling Back at the Table Level

Rollbacks allow a table in an undesirable state due to a bad ingestion job to have
essentially an undo button. This capability is critical in scenarios where an erroneous
data update has occurred and you need to revert the table to its previous consistent
state. Apache Iceberg has four Spark procedures that can be used to manage the
current state of the table: rollback_to_snapshot, rollback_to_timestamp, set_cur
rent_snapshot, and cherrypick_snapshot. The metadata tables are a great tool for
discovering what snapshots youd want to roll back to using many of the metadata
table queries we discussed earlier.

rollback_to_snapshot

Apache Iceberg provides a procedure called rollback_to_snapshot to roll back a
table based on a snapshot ID. To run the rollback_to_snapshot procedure you need
to provide it with two pieces of information: the name of the table and the ID of the
snapshot you want to roll back to. For example, if you have a table called orders and
you want to roll back to snapshot 12345, you would use the following command:

spark.sql("CALL catalog.database.rollback_to_snapshot('orders', 12345)")

When this procedure is invoked, the current table state is changed to point to the
provided snapshot ID. The metadata and datafiles of the table and its snapshot
remain unchanged, which means this operation is nondestructive. It is designed to be
safe to run concurrently with other operations on the table, preventing any potential
conflicts.

As an example, let’s consider a situation where you have made some updates to
your orders table, and you realize that an error in the update logic has introduced
incorrect values for some of the records. If you have a snapshot of the table taken
before the erroneous update, you can roll back the table to this snapshot, thereby
restoring the correct state of your data:

Assume the snapshot before the erroneous update was 12345

spark.sql("CALL catalog.database.rollback_to_snapshot('orders', 12345)")
It is also possible to adjust the behavior of rollback operations by altering cer-
tain settings in Apache Iceberg. For instance, you can set the rollback_to_snap
shot.expire_snapshots.enabled property to false to prevent the automatic
removal of snapshots older than the table’s expiration period after a rollback. You can
also set the rollback_to_snapshot.expire_snapshots.snapshot_age_ms property
to control the age threshold for removing snapshots after a rollback:

spark.sql(
CALL catalog.database.alter_table_properties(
'orders’',
map(

Rolling Back Changes | 215

'rollback_to_snapshot.expire_snapshots.enabled', 'false',
'rollback_to_snapshot.expire_snapshots.snapshot_age_ms', '172800000'
-- 2 days in milliseconds
)
)
"""

This setting ensures that snapshots older than one day are not automatically removed

after a rollback, giving you more control over the snapshot lifecycle and ensuring that
you can still roll back to these older snapshots if needed.

rollback_to_timestamp

Sometimes you don't know the exact ID of the snapshot you want to roll back to,
but you do know the moment in time, and this is where the rollback_to_timestamp
procedure becomes very useful. This procedure requires the name of the table to
update and a timestamp to roll back to as arguments. It invalidates all cached Spark
plans that reference the affected table, ensuring that any subsequent operations will
be based on the updated state of the table. The output of this procedure includes
the current snapshot ID before the rollback (previous_snapshot_id) and the new
current snapshot ID (current_snapshot_id).

Consider a scenario where you have a table named orders and you want to roll
back this table to a state that was current at a specific timestamp, say 2023-06-01
00:00:00. In Apache Spark with Iceberg, you would use the CALL statement with the
rollback_to_timestamp procedure:

// This code i1s in Scala

// Use the procedure to rollback the table
spark.sql(s"CALL iceberg.system.rollback_to_timestamp('db.orders', time
stamp('2023-06-01 00:00:00'))")

This statement calls the rollback_to_timestamp procedure on the orders table to
roll back the table to the snapshot that was current at 2023-06-01 00:00:00. It’s
important to note that you need to have the necessary permissions to perform this
operation on the table.

set_current_snapshot

The set_current_snapshot procedure sets the current snapshot ID for a table.
Unlike a rollback, youre setting the table not to a snapshot in its history but to
any arbitrary snapshot available, which could be on a different branch or tag. This
capability allows users to switch between different versions of the table, even if they
aren’t sequentially related. Before using the set_current_snapshot procedure, you
need to provide two pieces of information: the name of the table and the snapshot ID
of the snapshot that should be made the “current” snapshot. The output is similar to

216 | Chapter 10: Apache Iceberg in Production

rollback_to_timestamp, providing the snapshot ID before the change and the new
current snapshot ID.

Say you have a table named inventory and you want to set its current snapshot to
a specific snapshot ID; for example, 123456789. In Apache Spark with Iceberg, you
would use the CALL statement with the set_current_snapshot procedure, as shown
in the following code:

// This code i1s in Scala

// Specify the table to update
val tableName = "db.inventory"

// Specify the snapshot ID to set as current
val snapshotId = 123456789L

// Use the procedure to set the current snapshot
spark.sql(s"CALL iceberg.system.set_current_snapshot('StableName', S$snapshotId)")

This statement calls the set_current_snapshot procedure on the inventory table to
set the current snapshot to the ID 123456789. Remember that you need to have the
necessary permissions to perform this operation on the table.

cherrypick_snapshot

The cherrypick_snapshot procedure creates a new snapshot incorporating the
changes from another snapshot in a metadata-only operation (no new datafiles
are created). To run the cherrypick_snapshot procedure you need to provide
two parameters: the name of the table youre updating as well as the ID of the
snapshot the table should be updated based on. This transaction will return the
snapshot IDs before and after the cherry-pick operation as source_snapshot_id and
current_snapshot_1id.

For example, say you have a table named products and you want to cherry-pick
changes from a snapshot with ID 987654321. In Apache Spark with Iceberg, you
would use the CALL statement with the cherrypick_snapshot procedure. Here’s an
example:

// This Code i1s in Scala

// Use the procedure to cherry-pick the snapshot
spark.sql(s"CALL iceberg.system.cherrypick_snapshot('db.products', 987654321)")

This statement calls the cherrypick_snapshot procedure on the products table to
cherry-pick changes from the snapshot with the ID 987654321.

These procedures provide powerful tools to manage and manipulate the state of an
Apache Iceberg table. They offer flexibility and control over table versions, allowing
users to roll back changes, set specific snapshots as the current state, or cherry-pick

Rolling Back Changes | 217

changes from one snapshot to another. This facilitates effective data versioning
and historical analysis, which are essential in modern data science and analytics
workflows.

Rolling Back at the Catalog Level

One of the key benefits of using Nessie as your Apache Iceberg catalog is the ability to
roll back data at the catalog level. Just like how version control systems allow software
developers to roll back their entire codebase to a previous version, Nessie enables data
engineers and data scientists to roll back their entire data environment to a previous
state. This functionality is incredibly valuable in a variety of scenarios.

For instance, imagine a scenario where a data engineer runs a batch job that modifies
a large number of datasets but later realizes that there was a mistake in the transfor-
mation logic. Without a tool like Nessie, rectifying this mistake could require rolling
back each Iceberg table one by one. However, with Nessie, the engineer can simply
roll back the entire catalog to the state before the faulty batch job was run, effectively
undoing the mistake for every table in an instant.

Rollbacks in Nessie can be performed using SQL through integrations with tools such
as Apache Hive, Apache Spark, and Dremios SQL Query Engine. Here is an example
of how to roll back data in SQL with Project Nessie. First, you'll need to find the hash
of the commit that you want to roll back to. This can be done using the SHOW LOG
command:

SHOW LOG nessie.main

This will display a list of all commits on the main branch, along with their hashes.
Once you have identified the commit hash that you want to roll back to, you can use
the SET REF command to change the head of the branch to that commit:

SET REF nessie.main TO 'commitHash'

This command changes the head of the main branch to the specified commit hash
from before the bad transaction, effectively rolling back all changes that were made
after that commit.

Keep in mind that this command doesn’t make a permanent change; it makes the
change only for the current session. If you want to make the rollback permanent, you
can use the ASSIGN command instead of SET REF:

ASSIGN nessie.main AT 'commitHash'

This command will permanently roll back the main branch to the specified commit,
allowing all users to see the data as it was at that commit.

218 | Chapter 10: Apache Iceberg in Production

Nessi€’s ability to roll back data at the catalog level provides a powerful tool for man-
aging your data. It allows for easier recovery from mistakes, facilitates experimenta-
tion with data transformations, and simplifies the process of maintaining consistency
across different environments. Catalog-level rollbacks are a great remedy when data
recovery in production must occur quickly and across many tables.

Conclusion

The robust capabilities provided by Apache Iceberg metadata tables, branching and
tagging for Iceberg tables, multitable transactions, and Iceberg table rollback play a
fundamental role in effective production data management, allowing both proactive
and reactive approaches. In fact, Apache Iceberg metadata tables are integral to pro-
active and reactive data management, granting users an in-depth understanding of
their data landscape, tracking schema changes and partition evolutions. This critical
insight allows teams to make informed decisions, optimize data architecture, and
anticipate needs.

Branching and tagging further enhance proactive management by offering safe
environments to test changes or new features without disrupting production data,
enabling iterative development and constant improvement. These features also aid in
maintaining version control and facilitating experiment reproducibility.

On the reactive side, multitable transactions provide a higher level of control and
consistency. They ensure that related changes across multiple tables are handled as a
single atomic operation, preventing partial updates and ensuring the integrity of the
data environment.

Lastly, Iceberg table rollback offers a crucial recovery mechanism in case of errors or
unforeseen consequences of changes. This ensures the ability to revert to a previous
state, making it an essential tool for risk mitigation and data integrity in a reactive
data management strategy.

Together, these features constitute a robust framework for managing production data
effectively, balancing forward-thinking strategies with responsive, adaptive measures
to maintain the health, integrity, and efficiency of the data ecosystem.

In Chapter 11, we'll explore different ways to handle streaming data with Apache Iceberg.

Conclusion | 219

CHAPTER 11
Streaming with Apache Iceberg

Streaming data refers to the continuous generation and processing of data, often
coming from various sources. These sources can include logfiles, sensor data, social
media feeds, and financial transactions, among others. The data is sent in small sizes
(or packets) to allow real-time insights and reactions. The nature of streaming data is
that it is in constant motion and does not have a finite beginning or end.

The concept of streaming data is essential in the current age of digital information,
where businesses, research institutions, and government agencies often need to ana-
lyze and make decisions based on the freshest data possible. For example, financial
institutions may use streaming data to detect fraudulent transactions as they occur.
Similarly, social media platforms use streaming data to customize and update user
feeds based on real-time engagement metrics.

There are several reasons why one might want to stream data into an Apache Iceberg
table:

Scalability and performance
Apache Iceberg is designed to efficiently store and retrieve information from
large datasets. The file management procedures enable it to optimize perfor-
mance of an ever-changing/growing dataset, making it an excellent choice for
streaming analytics.

Schema evolution
As data changes over time, the structure of the data (the schema) may need to
evolve as well. Apache Iceberg allows for schema evolution without interrupting
ongoing data streaming processes, making it easier to adapt to changing data
requirements.

221

Reliability
Apache Iceberg provides snapshot isolation, meaning that each transaction oper-
ates on an unchanging snapshot of the table. This feature ensures consistent and
reliable data, even in environments with many concurrent operations.

Time travel
Iceberg stores a full history of the table’s metadata, which allows time-travel
queries that can access previous versions of the table.

By streaming data into an Apache Iceberg table, organizations can manage and
analyze their real-time data more efficiently and flexibly, adapting to changes and
maintaining reliability in their data analytics operations.

Streaming with Spark

One of the main features of Apache Spark is its ability to process streaming data.
This is managed through Spark Streaming, a Spark component that enables scalable,
high-throughput, fault-tolerant stream processing of live data streams. Here are some
key features of Spark Streaming:

Fault tolerance
Spark Streaming is designed to be resilient to failures, with built-in recovery
mechanisms. If a node goes down during a computation, the system can recover
quickly and continue processing.

Integration
Spark Streaming integrates seamlessly with other Spark components such as
Spark MLIib and Spark SQL, enabling powerful combined use cases. For exam-
ple, you can use MLIib to build a machine learning (ML) model on a large dataset
with Spark and then apply that model to a live data stream with Spark Streaming.

Real-time processing
Spark Streaming can process live data streams in real time. It divides incoming
data into batches, which are then processed by the Spark engine to generate the
final stream of results in batches.

Window operations
Spark Streaming provides windowed computations, where transformations on
Resilient Distributed Datasets (RDDs), Spark’s fundamental data structure, can
be applied over a sliding window of data. This is useful in many scenarios, such
as computing trends over the last few hours in a data stream.

High throughput
Spark Streaming is designed to process a large amount of data, making it suitable
for applications that need to process high-volume live data streams.

222 | Chapter 11: Streaming with Apache Iceberg

Multiple data sources
Spark Streaming can ingest data from various sources, including Kaftka, Flume,
and Kinesis, among others.

Apache Spark’s microbatching approach sets it apart from other streaming engines,
making it a compelling choice for real-time data processing. This approach involves
processing data in small, discrete batches rather than handling each data point indi-
vidually. This design decision represents a trade-off between factors such as latency,
throughput, and cost.

By breaking data into microbatches, Apache Spark gains several advantages. First,
it enhances fault tolerance, as any failures can be more easily managed within
each batch. Second, it seamlessly integrates with other Spark components, allowing
for a unified ecosystem for both batch and real-time processing. Additionally, this
approach enables real-time processing capabilities, as the microbatches are processed
continuously at a rapid pace. Lastly, it achieves high throughput, efficiently handling
large volumes of data.

Overall, Apache Spark’s microbatching approach strikes a balance between respon-
siveness, data volume handling, and resource efficiency, making it a favored choice in
the realm of big data and streaming applications.

In the following section, we provide an example of Apache Spark ingesting data from
Kafka into Apache Iceberg using Spark Streaming.

Streaming into Iceberg with Spark

Using Sparks DataSourceV2 API allows data engineers to read and write from tables
in a structured and scalable manner.

In Spark Structured Streaming, Spark’s SQL-based streaming API, Iceberg is fully
compatible with DataFrame reads and writes as of Spark 3. A key feature of this inte-
gration is the support for processing incremental data, which starts from a historical
timestamp. Only append snapshots are supported in the context of streaming reads
from an Iceberg table.

Spark’s DataStreamWriter is used to write data into an Iceberg table in a streaming
fashion. Iceberg supports two output modes: append, which appends rows of every
microbatch to the table; and complete, which replaces the table contents at each
microbatch.

When writing against a partitioned table, Iceberg necessitates that the data be sorted
as per the partition specification. While explicit sorting is recommended for batch
queries, it may not be practical for streaming due to the incurred latency. To bypass
this, Iceberg provides a fanout writer option that eliminates the need for sorting,
thereby reducing latency. A fanout writer is a technique to optimize performance.

Streaming with Spark | 223

Maintaining streaming tables on Iceberg is crucial. Streaming queries can quickly
generate new table versions, leading to a significant amount of table metadata and
small datafiles. For effective metadata management, strategies such as tuning the rate
of commits, expiring old snapshots, compacting datafiles, and rewriting manifests are
recommended.

Tuning the commit rate helps control the number of datafiles, manifests, and snap-
shots, simplifying table maintenance. If not managed, old snapshots can accumulate
rapidly and should be regularly expired and removed. The compaction of datafiles
helps to reduce metadata and enhance query efficiency, while rewriting manifests
optimizes write latency and compacts small manifest files. These operations on table
maintenance and optimization are covered in detail in Chapter 4.

Lets look at an example of streaming financial data into Apache Iceberg tables using
Spark Structured Streaming, which allows you to continuously capture real-time
market data, transactions, and portfolio updates. We'll walk through a simple exam-
ple using hypothetical financial data. We'll assume we read the data from a Kafka
topic and write it to an Iceberg table.

First, we'll use Scala to set up our Spark Session:

val spark = SparkSession.builder()
.appName("FinancialDataStreaming")
.getOrCreate()

Let’s assume we have a Kafka topic, financialData, where every message is a JSON
string of financial data that contains the following fields: timestamp, symbol, price,
and volume. We use the readStream method to read from Kafka:

val df = spark.readStream
.format("kafka")
.option("kafka.bootstrap.servers", "localhost:9092")
.option("subscribe", "financialData")
.load()

Then we convert the Kafka stream into a DataFrame of Stock objects:

val financialData = df.selectExpr("CAST(value AS STRING)").as[String]
.map(Stock.from_json(_))

The Stock class can be defined as follows:

case class Stock(timestamp: Long, symbol: String, price: Double, volume: Long)
object Stock {
def from_json(jsonString: String): Stock = {
val parser = new ObjectMapper()
parser.registerModule(DefaultScalaModule)
parser.readValue(jsonString, classOf[Stock])
}
}

224 | Chapter 11: Streaming with Apache Iceberg

Now that we have our data stream, we can start appending the data into our Iceberg
table. The append output mode is used since we want to add new data without
affecting the existing data:

val tableldentifier = "s3://someBucket/financial_data/stock"

financialData.writeStream
.format("iceberg")
.outputMode("append")
.trigger(Trigger.ProcessingTime(1, TimeUnit.MINUTES))
.option("path", tableIdentifier)
.option("checkpointLocation", "/tmp/checkpoints")
.start()

If the Iceberg table is partitioned, say, by symbol, we need to enable the fanout-
enabled option to eliminate the requirement for data sorting:

financialData.writeStream
.format("iceberg")
.outputMode("append")
.trigger(Trigger.ProcessingTime(1, TimeUnit.MINUTES))
.option("path", tableIdentifier)
.option("fanout-enabled", "true")
.option("checkpointLocation", "/tmp/checkpoints")
.start()

Finally, considering the rapid growth of data, we need to take care of the table’s
maintenance by tuning the rate of commits, expiring old snapshots, compacting
datafiles, and rewriting manifests. This ensures that the table stays performant and
manageable. A combination of these strategies will ensure that your streaming data
platform remains reliable and robust.

Streaming from Iceberg with Spark

While streaming into Iceberg tables focuses on ingesting real-time data, streaming
from Iceberg involves reading this data for various downstream applications and
analytics tasks. Using Spark Structured Streaming, data engineers can efficiently read
and process data stored in Iceberg tables.

Using the DataSourceV2 API in Spark 3, Iceberg supports processing incremental
data starting from a historical timestamp, as shown in the following code:

val df = spark.readStream
.format("iceberg")
.option("stream-from-timestamp", Long.toString(streamStartTimestamp))
.load(tableName)

For streaming read operations from an Iceberg table, it’s essential to note that Iceberg
only supports reading data from append snapshots. Moreover, it’s important to design
the downstream applications to handle the real-time data streamed from Iceberg

Streaming with Spark | 225

appropriately. Depending on the use case, this might involve real-time analytics,
alerts, or further processing.

Sharing real-time data with partners is a common use case in today’s interconnected
business environments. When both entities use Iceberg tables, the process can be stream-
lined using Spark Structured Streaming. Here’s an example of how this can be achieved.

Let’s assume you want to share your Iceberg table our_database.our_table with
a partner, and they want this data streamed into their Iceberg table, partner_data
base.partner_table. First, you'll set up the Spark Session for reading from your
table:

val spark = SparkSession.builder()
.appName("IcebergbDataSharing")
.getOrCreate()

Next, initiate a stream to read from your Iceberg table:

val ourDF = spark.readStream
.format("iceberg")
.option("stream-from-timestamp", Long.toString(streamStartTimestamp))
.load(sourceTableName)

Now you’'ll write this data stream to the partner’s Iceberg table. Considering the
nature of the streaming data, you'll use the append mode:

ourDF.writeStream
.format("iceberg")
.outputMode("append")
.trigger(Trigger.ProcessingTime(1, TimeUnit.MINUTES))
.option("path", destinationTableName)
.option("checkpointLocation", checkpointPath)
.start()

If the partner’s Iceberg table has partitions, say, by a column named region, you'll
want to ensure that the data writes are optimized:

ourDF.writeStream
.format("iceberg")
.outputMode("append")
.trigger(Trigger.ProcessingTime(1, TimeUnit.MINUTES))
.option("path", destinationTableName)
.option("fanout-enabled", "true")
.option("checkpointLocation", checkpointPath)
.start()

To maintain seamless and efficient real-time data sharing with partners, it is essential
to adhere to a set of best practices. First, schema consistency is crucial; ensure that the
schema of our_database.our_table matches or is compatible with partner_data
base.partner_table to prevent any write errors.

226 | Chapter 11: Streaming with Apache Iceberg

Additionally, in cases where the partner is only interested in a subset of the data,
it’s advisable to implement data filtering before writing to their table. This not only
streamlines the process but also makes it more efficient. Furthermore, robust error
handling mechanisms should be in place to manage streaming failures, thereby
preventing data loss or duplication. Finally, monitoring and setting up alerts for the
streaming job is vital.

This approach will help you keep track of the job’s performance and quickly identify
potential issues, ensuring that necessary stakeholders are alerted if problems arise.
By following these best practices, collaboration is enhanced, and both parties benefit
from access to timely and accurate information.

Streaming with Flink

Apache Flink is an open source, unified stream-batch processing engine developed by
the Apache Software Foundation. Flink is designed to process large volumes of data at
high speeds, making it particularly useful for real-time data processing and analytics.

Flink provides a high-throughput, low-latency streaming engine, as well as support
for event time semantics, exactly-once semantics, backpressure control, and more. It
excels in processing streaming data while also providing batch processing capabilities,
ML libraries, and graph processing capabilities. Here are some key features of Apache
Flink’s streaming capabilities:

Event time processing
FlinK’s event time processing feature allows it to handle out-of-order data and
provide accurate results, which is crucial for many real-time applications. This
is particularly useful in scenarios where the order of events matters, such as in
financial transactions and sensor data processing.

Fault tolerance
Like Spark, Flink provides fault tolerance through its checkpointing and save-
point mechanism. These features ensure that data is not lost during processing
and allow for recovery from failures without data loss.

Backpressure handling
Flink handles backpressure, which occurs when data is produced more quickly
than it can be consumed. This ensures the stability of the system even when
facing a large influx of data.

High throughput and low latency
Flink is designed to process large volumes of data with low latency, making it
suitable for applications that require real-time insights.

Streaming with Flink | 227

Windowing and complex event processing
Flink provides flexible windowing based on time, count, session, and more.
Additionally, it supports complex event processing (CEP), which allows for pat-
tern detection and selection in data streams.

Integration
Flink integrates with a variety of data sources and sinks, including Kafka, the
Hadoop Distributed File System (HDEFS), and databases such as Cassandra.

Exactly-once semantics
Flink supports exactly-once processing semantics, ensuring that each record will
be processed exactly once, thereby delivering accurate results.

In a nutshell, Apache Flink is a powerful stream processing technology that excels
in delivering high-speed, accurate, and scalable data processing solutions. Its combi-
nation of robust streaming capabilities, fault tolerance features, and integrations with
other data systems makes it a strong choice for real-time data processing.

Streaming into Iceberg with Flink

The Apache Iceberg Flink libraries allow you to work with Apache Iceberg tables as
data sources or data sinks (destinations) using Flink’s DataStream API and Table API.
First, we'll explore reading from Iceberg in Flink, and then we'll discuss writing from
Iceberg in Flink.

What Are Flink’s DataStream and Table APIs?

The Apache Flink platform features two main APIs for data processing, the Data-
Stream API and the Table API, each catering to different needs.

The DataStream API is designed for handling continuous, unbounded data streams
such as Internet of Things (IoT) sensor data or log streams, offering a lower-level,
expressive approach with detailed control over aspects such as event time processing
and windowing operations. It is ideal for real-time, event-driven scenarios and boasts
extensive connectivity options.

In contrast, the Table API focuses on structured, bounded data in table format, suitable
for batch processing and analytical tasks. It provides a higher-level abstraction with an
SQL-like interface, simplifying the expression of data processing tasks and automating
execution plan optimization. While it also supports event time processing, its complex
event handling capabilities are more limited than the DataStream APL

The choice between these APIs hinges on the specific requirements of the task, with
the DataStream API offering detailed control for real-time applications and the Table
API being more apt for structured data and analytical processing.

228 | Chapter 11: Streaming with Apache Iceberg

Flink for stream reading

Apache Iceberg provides robust support for both streaming and batch read opera-
tions using Apache Flink’s DataStream API and Table API. This support allows users
to read data easily and flexibly from Iceberg tables.

In the SQL context, the Flink job’s execution mode can be toggled between streaming
and batch modes with simple SQL commands. For batch read, users can submit a
Flink batch job with a SELECT statement after setting the runtime mode to batch.
In contrast, for streaming reads, users first set the runtime mode to streaming and
enable dynamic table options. They can then use SELECT with the streaming option
set to true and specify the monitor interval.

Let’s see an example using batch mode for batch data. First set the execution mode to
batch. Then execute a SELECT statement to read data from the sales_data table:

TableEnvironment tableEnv = TableEnvironment.create(EnvironmentSettings.new
Instance().build());

// Set the execution mode to 'batch'.
tableEnv.getConfig().getConfiguration().setString("execution.runtime-mode",
"batch");

// Execute a SELECT statement.
TableResult result = tableEnv.executeSql("SELECT * FROM sales_data");
result.print();

Here’s an example using streaming mode for streaming data. First set the execution
mode to streaming and enable dynamic table options. Then execute a SELECT state-
ment with the streaming option set to true and specify the monitor interval:

// Set the execution mode to 'streaming' and enable dynamic table options.
tableEnv.getConfig().getConfiguration().setString("execution.runtime-mode",
"streaming");
tableEnv.getConfig().getConfiguration().setBoolean("table.dynamic-table-
options.enabled", true);

// Execute a SELECT statement with the streaming option

and a monitor interval of 1 second.

TableResult result = tableEnv.executeSql(

"SELECT * FROM sales_data /*+ OPTIONS('streaming'='true',

'monitor-interval'='1s')*/");

result.print();
Iceberg even supports reading incremental data starting from a specific historical
snapshot ID. Users can set different Flink SQL hint options for the streaming job
for further customization, such as the start-snapshot-1id option, as shown in the
following code. With the Hints pattern, available in many software frameworks, you
can submit directions via comments that are processed before running the code itself:

Streaming with Flink | 229

TableEnvironment tableEnv = TableEnvironment.create(EnvironmentSettings.new
Instance().build());

// Set the execution mode to 'streaming' and enable dynamic table options.
tableEnv.getConfig().getConfiguration().setString("execution.runtime-mode",
"streaming");
tableEnv.getConfig().getConfiguration().setBoolean("table.dynamic-table-
options.enabled", true);

// Specify the historical snapshot ID from which to start reading.
String startSnapshotId = "3821550127947089987"; // Replace
// with your actual snapshot ID.

// Execute a SELECT statement with the streaming option
and a monitor interval of 1 second.
// Start reading incremental data from the specified snapshot ID.
TableResult result = tableEnv.executeSql(

"SELECT * FROM sales_data /*+ OPTIONS('streaming'='true',
'monitor-interval'='1s', 'start-snapshot-id'=""

+ startSnapshotId + "')*/");
result.print();

In the DataStream context, Iceberg supports both batch and streaming reads, which
we will illustrate in the following examples. For streaming reads, similar steps are
followed, but with the streaming option set to true and the startSnapshotId option
set to a specific snapshot ID.

For batch data:

StreamExecutionEnvironment env = StreamExecutionEnvironment.createLocalEnviron
ment();

TableLoader tableLoader = TablelLoader.fromHadoopTable("s3://someBucket/retail/
sales_data");

IcebergSource<RowData> source = IcebergSource.forRowData()
.tableLoader(tableLoader)
.assignerFactory(new SimpleSplitAssignerFactory())
.build();

DataStream<RowData> batch = env.fromSource(
source,
WatermarkStrategy.noWatermarks(),

"My Iceberg Source",
TypeInformation.of(RowData.class));

// Print all records.
batch.print();

// execute batch read job.
env.execute("Iceberg Batch Read");

230

| Chapter 11: Streaming with Apache Iceberg

For batch reads, users can use the TableLoader and FlinkSource classes in the Java
API to read all records from an Iceberg table. The data is then printed to stdout.

For streaming data:

StreamExecutionEnvironment env = StreamExecutionEnvironment.createlLocalEnviron
ment();

TableLoader tableLoader = TablelLoader.fromHadoopTable("s3://someBucket/retail/
sales_data");

IcebergSource source = IcebergSource.forRowData()

.tableLoader(tableLoader)

.assignerFactory(new SimpleSplitAssignerFactory())

.streaming(true)

.streamingStartingStrategy(StreamingStartingStrategy.INCREMENTAL_FROM_LAT
EST_SNAPSHOT)

.monitorInterval(Duration.ofSeconds(60))

.build()

DataStream<RowData> stream = env.fromSource(
source,
WatermarkStrategy.noWatermarks(),

"My Iceberg Source",
TypeInformation.of(RowData.class));

// Print all records.
stream.print();

// execute streaming read job.
env.execute("Iceberg Stream Read");

For streaming reads, similar steps are followed, but with the streaming option set to
true and the startSnapshotId option set to a specific snapshot ID.

Branches and tags can be read via the DataStream API by specifying options in
the branch or tag method of FlinkSource.Builder. Users can set a number of
options when configuring the Flink IcebergSource or via Flink SQL hints, enabling
fine-tuned control over their read operations:

DataStream<RowData> batch = FlinkSource.forRowData()
.env(env)
.tableLoader(tableLoader)
.branch("etl-branch")
.streaming(false)
.build();

Flink for stream writing

Streaming writes to Apache Iceberg with Apache Flink’s DataStream API and Table
API provide seamless support for real-time data ingestion and processing. Iceberg

Streaming with Flink | 231

supports both batch and streaming writes, making it a versatile and powerful option
for data streaming pipelines.

In Flinks SQL API, Iceberg supports both INSERT INTO and INSERT OVERWRITE
operations. To append new data to an Iceberg table in a Flink streaming job, the
INSERT INTO command is used. It allows for easy addition of new records to the table.
INSERT OVERWRITE can be used in a batch job to replace the data in the table with the
result of a query. Iceberg ensures that overwrites are atomic operations, making data
updates safe and reliable.

What Is INSERT OVERWRITE and How Does It Work?

INSERT OVERWRITE replaces existing data in a table with query results or new
data, commonly used for batch processing in Iceberg tables. This atomic operation
refreshes the table with the latest data in scenarios such as periodic loads or updates,
ensuring consistency. In partitioned tables, it can target specific partitions. However,
for real-time processing in Flink and Iceberg, INSERT INTO is preferred over INSERT
OVERWRITE, which is designed for batch updates, guaranteeing data integrity and
accuracy.

When working with DataStreams, Iceberg provides convenient APIs to perform
various write operations. For appending data, both DataStream<RowData> and Data
Stream<Row> can be directly written to the Iceberg table using the FlinkSink.forRow
Data() API. For example:

StreamExecutionEnvironment env = ...;

DataStream<RowData> input = ...;

Configuration hadoopConf = new Configuration();

TableLoader tableLoader = TablelLoader.fromHadoopTable("hdfs://nn:8020/warehouse/
path", hadoopConf);

FlinkSink.forRowData(input)
.tableLoader(tableLoader)
.append();

env.execute("Retail Sales Data Example");

For more advanced scenarios, Iceberg also supports overwriting and upserting data.
Overwriting existing data can be achieved by setting the overwrite flag in the
FlinkSink builder. Upserting based on a primary key can be enabled either using a
table-level property or as a write option in the builder. Here are examples of both:

// Overwriting data

FlinkSink.forRowData(input)
.tableLoader(tableLoader)
.overwrite(true)

232 | Chapter 11: Streaming with Apache Iceberg

.append();

// Upserting data
FlinkSink.forRowData(input)
.tableLoader(tableLoader)
.upsert(true)
.append();
In addition to direct DataStream writes, Iceberg also provides the flexibility to write
a generic DataStream<T> by using a custom mapper, such as AvroGenericRecordTo
RowDataMapper, to convert data to the required format before writing. Here is an
example:

// Define the custom AvroGenericRecordToRowDataMapper
AvroGenericRecordToRowDataMapper mapper = new AvroGenericRecordToRowData

Mapper();

// Create a generic DataStream<GenericRecord> from a source (e.g., Kafka)
DataStream<GenericRecord> genericDataStream = ... // your DataStream
source

// Write the generic DataStream to the Iceberg table using the custom
mapper
FlinkSink.builderFor(
genericDataStream,
mapper,
// Optionally specify the TypeInfo for RowData if needed
TypelInformation.of (RowData.class)

)

.table(tableName)
.tableLoader(tableLoader)
.build();

env.execute("Iceberg Generic DataStream Example");

Streaming writes to Apache Iceberg with Apache Flink offer a robust and efficient
way to handle real-time data ingestion and processing in a retail sales data scenario,
ensuring data consistency and atomicity even in high-velocity streaming environ-
ments. The provided code examples demonstrate how to leverage Flink’s APIs to
seamlessly interact with Iceberg tables for both batch and streaming writes.

Example of Streaming into Iceberg with Flink

In this scenario, we have two existing tables in the Hive catalog: retail_sales_data
and sales_data_summary. The retail_sales_data table contains raw sales data with
details such as purchase_date, quantity, and price. The sales_data_summary table is
an Iceberg table with a partitioned schema to store monthly aggregated sales data. Our
goal is to perform data processing every hour and update the sales_data_summary table
with the latest aggregated sales data for each month. The sales_data_summary table is

Streaming with Flink | 233

partitioned by the date column by month. The relevant code follows; to see the full code
snippet, visit the book’s GitHub repository:

String createCatalogStatement = "CREATE CATALOG " + catalogName +

" WITH (\n" +
"'type'="" + catalogType + "',\n" +
"'catalog-type'="'hive',\n" +
"turi'="" + hiveCatalogUri + "',\n" +
"'warehouse'="" + warehousePath + "',\n" +
"'clients'="" + hiveClientConfig + "',\n" +
"'property-version'="1"'\n" +
)"

// Register Hive Catalog
tEnv.executeSql(createCatalogStatement);
tEnv.useCatalog(catalogName);

// Define the source and destination table names
String sourceTableName = "retail_sales_data";
String destinationTableName = "sales_data_summary";

// Calculate the current month's partition value (e.g., '2023-08' for
August 2023)
String currentMonthPartition = getCurrentMonthPartition();

// SQL query to process data for the current month
String sqlQuery = "INSERT OVERWRITE " + destinationTableName + " PARTI

TION (month = '" + currentMonthPartition + "') " +
"SELECT date, SUM(sales_amount) as total_sales " +
"FROM " + sourceTableName + " " +
"WHERE month = '" + currentMonthPartition + "' " +

"GROUP BY date";

// Execute the SQL query
tEnv.executeSql(sqlQuery);

// Sleep for one hour before executing the job again
Thread.sleep(3600000);

This job is designed to perform a series of tasks in sequence. Initially, it queries the
aggregated state to retrieve the current day’s sales data for all dates within the current
month. Following this, it executes an INSERT OVERWRITE command on the aggregate
table. This step is crucial as it updates the data in the current month’s partition with
the newly fetched information. After completing the data insertion, the job enters
sleep mode for an hour. During this period, no operations are conducted. Once the
hour-long break concludes, the task is programmed to restart and repeat the same
sequence of operations.

234 | Chapter 11: Streaming with Apache Iceberg

https://oreil.ly/supp-guide-apache-iceberg

This aggregate table can be used for business intelligence (BI) dashboards on sales
data and will be updated on sales up to the hour. We can update the data freshness
by tweaking how often the job runs. If the job typically takes 30 seconds to complete,
we can reduce the job frequency to 30 seconds to improve the data freshness of
dashboards fueled by the aggregate table (a more frequent job may run more quickly,
enabling even shorter intervals).

Streaming with Kafka Connect

Apache Kafka Connect is an open source component of the Apache Kafka platform
that provides a scalable and reliable way to move data into and out of Kafka. Thou-
sands of companies use Kafka Connect for integrating various systems with Apache
Kafka to stream data in real time.

Here are some key features of Apache Kafka Connect’s capabilities:

High throughput
Kafka Connect can facilitate the transfer of vast volumes of data effectively.
It is designed to work seamlessly with Apache Kafka to ensure efficient data
streaming between systems.

Fault tolerance
Kafka Connect is built to be resilient. It can automatically manage failures,
ensuring uninterrupted data flow between different systems and Apache Kafka.

Real-time integration
With Kafka Connect, data can be integrated in real time, enabling systems to
remain synchronized and up to date.

Durability
Kaftka Connect works with Kafka topics, where each record is stored on disk
and replicated for fault tolerance. This ensures that even if there’s a hiccup, data
remains consistent and intact.

Wide integration
Katka Connect supports a vast ecosystem of connectors, making it easy to inte-
grate with various systems, databases, and applications. Whether you need to pull
data from a database into Kafka or push data from Kafka into a cloud storage
solution, there’s likely a connector that fits your needs.

Exactly-once semantics
Just like Apache Kafka, Kafka Connect supports exactly-once processing seman-
tics, ensuring that each record is delivered exactly once, avoiding data duplication
or loss.

Streaming with Kafka Connect | 235

Connector framework
Kafka Connect provides a framework for building and running reusable connec-
tors, which can be used to stream data between Apache Kafka and other systems,
without requiring any code changes to Kafka itself.

Apache Kafka Connect is a robust integration tool within the Apache Kafka ecosys-
tem, providing seamless, real-time integration capabilities. Its extensive features make
it the go-to choice for businesses looking to integrate various systems with Apache
Kafka in a scalable and reliable manner.

The Iceberg Kafka Sink

A Kafka sink is a component in Apache Kafka that allows data to be consumed from
Kafka topics and written to external systems or databases. It plays a crucial role in
data integration and data flow by enabling seamless transfer of data from Kafka to
various data stores, databases, or analytics platforms.

The Apache Iceberg Sink Connector is a specialized Kafka sink connector that is
used for writing data from Kafka into Iceberg tables. It provides various features and
capabilities, making it a powerful tool for data integration and storage. There are
many features of the Apache Iceberg Sink Connector:

Commit coordination
Centralized Iceberg commits ensure consistency and atomicity in data writes.

Exactly-once delivery semantics
Exactly-once delivery semantics ensure that data is processed and written to
Iceberg tables exactly once, even in the presence of failures.

Multitable fanout
Writing data to multiple Iceberg tables based on specific routing criteria allows
for flexible data distribution.

Row mutations
Support for row mutations enables update and delete operations on existing rows
in Iceberg tables.

Upsert mode
Upsert mode allows for efficient updates of data in Iceberg v2 tables with identity
fields defined.

Configuring the Apache Iceberg Kafka sink

The connector offers various configuration options to customize the behavior and
ensure smooth data transfer. Let’s explore the different configuration properties and
their significance:

236 | Chapter 11: Streaming with Apache Iceberg

iceberg.tables
This property allows you to specify a comma-separated list of destination tables
where data from Kafka will be written to Iceberg.

iceberg.tables.routeField
For multitable fanout, this property defines the field used to route records to
different destination tables based on their values.

iceberg.tables.<table name>.routeRegex
This property is used in multitable fanout mode to specify for the mentioned
<table name> the regex pattern used to match the routeField value to a specific
destination table.

iceberg.tables.dynamic.enabled
Setting this property to true enables dynamic routing of records to different
destination tables based on the value in routeField.

iceberg.tables.cdcField
If specified, this property designates the field that contains change data capture
(CDC) operation codes, such as I for insert, U for update, and D for delete.

iceberg.tables.upsertModeEnabled
When set to true, this property enables upsert mode, which ensures efficient
updates to existing data by preceding appends with an equality delete.

iceberg.control. topic
This property defines the name of the control topic used for managing connector
offsets and committing transactions.

iceberg.control.group.id
This property specifies the consumer group ID used to store offsets in the
sink-managed consumer group.

iceberg.control.commitIntervalMs
This specifies the commit interval in milliseconds, which determines how fre-
quently the connector commits transactions.

iceberg.control.commitTimeoutMs
This specifies the commit timeout interval in milliseconds. If a commit takes
longer than this duration, it is considered failed.

iceberg.control.commitThread
This specifies the number of threads used for committing transactions. The
default is twice the number of CPU cores.

Streaming with Kafka Connect | 237

iceberg.catalog
This is the name of the catalog used for connecting to the Iceberg table storage.
The default is “iceberg”

iceberg.catalog.*
This is for additional properties passed through to the Iceberg catalog initiali-
zation. Different catalog types, such as REST, Hive, and Hadoop, may require
specific configuration properties.

iceberg.kafka.*
This is for additional properties passed through to the Kafka client used to
connect to the control topic. This allows you to set custom Kafka client settings.

Setting up Kafka Connect with Apache Iceberg

To set up Kafka Connect with Apache Iceberg, start by ensuring that Kafka Connect
is installed and running on your system. You can download Kafka from the official
Apache Kafka website and follow the installation instructions provided in the docu-
mentation.

Build the Apache Iceberg Sink Connector for Kafka Connect. You can either use
the prebuilt connector JAR or build it yourself from the source code (located in
the book’s GitHub repository). If you want to build it yourself, clone the Iceberg
repository from GitHub and run the following command inside the kafka-connect-
iceberg module:

./gradlew -xtest clean build

Open the Katka Connect worker properties file (usually named worker.properties) and
add the necessary Kafka client properties related to your Kafka setup. For example,
if you want to enable SSL communication with the Kafka broker, you may add the
following properties:

Worker properties (worker.properties)
bootstrap.servers=kafka-broker1:9092,kafka-broker2:9092
security.protocol=SSL
ssl.truststore.location=/path/to/truststore. jks
ssl.truststore.password=truststore_password

In the same worker properties file (worker.properties), you can set the Apache Iceberg
Kafka sink properties. For example:

Apache Iceberg Sink properties
connector.class=10.tabular.iceberg.connect.IcebergSinkConnector
tasks.max=2

topics=events

iceberg.tables=default.events

iceberg.catalog. type=rest

iceberg.catalog.uri=https://localhost

238 | Chapter 11: Streaming with Apache Iceberg

https://github.com/tabular-io/iceberg-kafka-connect

iceberg.catalog.credential=<credential>
iceberg.catalog.warehouse=<warehouse name>

You can modify the properties according to your setup. Make sure to set the correct
values for iceberg.catalog.uri, iceberg.catalog.credential, and iceberg.cata
log.warehouse to connect to your Iceberg catalog.

Start the Kafka Connect service, specifying the worker.properties file as a command-
line argument:

bin/connect-distributed.sh config/worker.properties
Alternatively, you can run Kafka Connect in standalone mode:
bin/connect-standalone.sh config/worker.properties connector.properties

Note that the connector.properties file should contain the Apache Iceberg Sink Con-
nector properties mentioned earlier.

Once Kafka Connect is running, it will automatically start the Apache Iceberg Sink
Connector and begin writing data from the specified topics to the Iceberg tables.
Check the logs to ensure that the connector has started successfully and is processing
data as expected.

Monitor the Apache Iceberg sink’s performance and check for any errors or warnings
in the logs. You can use tools such as the Kafka Connect REST API or Kafka Connect
UI to monitor the connector’s status and performance.

That’s it! You have now set up the Apache Iceberg sink with the Kafka client configu-
ration. The sink connector will take care of writing data from Kafka topics to the
specified Iceberg tables, while the Kafka client will handle the communication with
the Kafka broker based on the configured properties. Remember to review the Katka
documentation and the Apache Iceberg documentation for more details on available
Kafka client properties and the Iceberg sink connector configuration options.

Streaming with AWS

Amazon Web Services (AWS) offers a suite of real-time data streaming services
that enable developers to collect, process, analyze, and deliver continuous streaming
data at scale for real-time applications and analytics solutions. AWS’s data streaming
services are secure, highly available, durable, and fully managed, making it easier for
developers to build real-time applications.

The AWS data streaming ecosystem consists of the following components:

Source
Data is produced at a high volume and velocity by thousands of devices or appli-
cations, such as mobile devices, web applications, application logs, IoT sensors,
smart devices, and gaming applications.

Streaming with AWS | 239

Stream ingestion
AWS provides simple integration with more than 15 AWS services that capture
continuous data in a durable and secure manner.

Stream storage
AWS offers solutions such as Amazon Kinesis Data Streams, Amazon Kinesis
Data Firehose, and Amazon Managed Streaming for Apache Kafka (Amazon
MSK) to meet your storage needs based on scaling, latency, and processing
requirements.

Stream processing
AWS provides a range of services for data transformation and delivery. Services
range from Amazon Kinesis Data Firehose to custom-built real-time applications
and ML integration using services such as Amazon Kinesis Data Analytics and
AWS Lambda.

Destination
AWS delivers streaming data to a selection of fully integrated data lakes, data
warehouses, and analytics services for further analysis or long-term storage.

Following are some of the key AWS services for real-time data streaming:

Amazon Kinesis Data Streams
A scalable and durable real-time data streaming service that can continuously
capture gigabytes of data per second from hundreds of thousands of sources

Amazon Kinesis Data Firehose
Captures, transforms, and loads data streams into AWS data stores for near-real-
time analytics with existing BI tools

Amazon Kinesis Data Analytics
Allows you to process data streams in real time with SQL or Java (using Apache
Flink) without having to learn new programming languages or processing frame-
works

Amazon MSK
A fully managed service that makes it easy to build and run applications that use
Apache Kafka to process streaming data

AWS data streaming services support a wide variety of use cases, including real-time
data movement, real-time analytics, and event stream processing. This allows users
to analyze data as soon as it is produced, store the data for further analysis, enable
real-time decisions across an organization, capture and respond to events as they
happen in real time across multiple applications, and maintain a system of record
via CDC.

240 | Chapter 11: Streaming with Apache Iceberg

Using AWS Glue Studio with Apache Iceberg to ingest data into Iceberg tables
provides a powerful and efficient way to manage and process data in data lakes. AWS
Glue 3.0 and later support Apache Iceberg. This integration allows users to perform
read and write operations on Iceberg tables in Amazon Simple Storage Service (Ama-
zon S3) and leverage the AWS Glue Data catalog for additional operations, including
inserts, updates, and Spark reads and writes.

One of the key advantages of using AWS Glue Studio with Apache Iceberg is the
support for both AWS Kinesis Stream and Kafka Stream as data sources. Users can
seamlessly ingest data from these streaming sources into Iceberg tables in Amazon S3
for further processing and analysis.

To enable Iceberg for AWS Glue, you need to specify iceberg as the value for
the --datalake-formats job parameter. Additionally, you must set specific Spark
configurations to handle Iceberg tables correctly. These configurations include
setting spark.sql.extensions to org.apache.iceberg.spark.extensions.Iceberg
SparkSessionExtensions and configuring the glue_catalog properties such as ware
house, catalog-impl, and io-impl. For more details on these settings, refer to
Chapters 5 and 8.

If you are using AWS Glue 3.0 with Iceberg 0.13.1, you must also set the additional
configurations for using the Amazon DynamoDB lock manager to ensure atomic
transactions. AWS Glue 4.0, on the other hand, uses optimistic locking by default
(meaning you don’t have to configure the lock manually).

To use a different version of Iceberg that is not natively supported by AWS Glue, you
can specify your own Iceberg JAR files using the - -extra-jars job parameter.

Once you have enabled Iceberg and set up the configurations, you can easily create
and register Iceberg tables from DataFrames in AWS Glue Studio. For example, you
can create an Iceberg table from a DataFrame and register it in the AWS Glue Data
catalog using SQL queries. Similarly, you can read data from an Iceberg table in
Amazon S3 using the Glue Data catalog and perform insert operations to add data to
the Iceberg table.

Here is an example of how to write an Iceberg table to Amazon S3 and register it in
the AWS Glue Data catalog using Python:

Example: Create an Iceberg table from a Dataframe and register the table to
Glue Data Catalog
dataFrame.createOrReplaceTempView("incoming_data")

Insert Data into an existing Iceberg table in Glue Catalog
query = £"""
INSERT INTO glue.db.destination_table SELECT * FROM incoming_data

spark.sql(query)

Streaming with AWS | 241

In this example, the DataFrame dataFrame is created, and a temporary view is
assigned to it. The Iceberg table is then created using SQL query syntax, and the table
is registered in the AWS Glue Data catalog.

Overall, using AWS Glue Studio with Apache Iceberg for ingesting data into Iceberg
tables provides a seamless and efficient way to manage and analyze data in data lakes.
Whether the data is sourced from AWS Kinesis Stream or from Kafka Stream, users
can leverage the powerful features of Iceberg and AWS Glue to process and analyze
their data effectively.

Conclusion

There are many tools that can be used to help process streaming real-time data into
and from Apache Iceberg tables, including Apache Spark, Apache Flink, AWS Kinesis,
and Kafka Connect. The books GitHub repository includes a chart summarizing
many of the features of the tools covered in this chapter.

In Chapter 12, we will discuss governance and security for your Apache Iceberg tables.

242 | Chapter 11: Streaming with Apache Iceberg

https://oreil.ly/supp-guide-apache-iceberg

CHAPTER 12
Governance and Security

As organizations increasingly embrace modern data lakehouse architectures such
as Apache Iceberg lakehouses, they benefit from their flexibility, scalability, and
performance improvements. However, these advantages bring forth new challenges
concerning data security and governance.

This chapter delves deep into the multifaceted world of securing and governing
Apache Iceberg tables. Apache Iceberg serves primarily as a standard for how meta-
data defines a dataset and doesn’'t have any security aspects built into it for purposes
of security outside of some table properties to select a file encryption type. Securing
your Apache Iceberg tables is primarily handled by the storage, access, and compute
layers you use to work with your tables.

As you embark on this journey, you’ll discover three critical angles for safeguarding
your data lakehouse:

o Securing your datafiles
o Security and governance via a semantic layer

« Security and governance at the catalog level

Organizations must adopt a comprehensive approach to secure and govern their
Apache Iceberg tables effectively. By examining these three angles—securing data
files, implementing security and governance via a semantic layer, and ensuring
catalog-level security—you’ll be well equipped to navigate the complexities of data
protection in your modern data lakehouse. So, let’s embark on this journey to fortify
your data assets and harness the full potential of Apache Iceberg.

Keep in mind that governance and security are deep topics to which several books
are already devoted. In this chapter, we'll cover a handful of examples of using tools

243

to secure Apache Iceberg tables. This chapter isn’t meant to offer an exhaustive list of
tools or approaches.

Securing Datafiles

At the core of every data lakehouse lies a vast repository of datafiles. Securing these
files is the first defense against unauthorized access and data breaches. This section
explores various tools and best practices for securing the underlying datafiles within
an Apache Iceberg table, from encryption and access controls to data masking and
auditing.

Securing your datafiles at the storage level is paramount, as these files form the bed-
rock of your data infrastructure. In an age where cyber threats loom, organizations
must fortify their data against many vulnerabilities. The potential pitfalls are numer-
ous, from external threats such as hacking attempts and data breaches to internal
risks such as data leakage and unauthorized access. By addressing these vulnerabili-
ties proactively, organizations can safeguard their data’s integrity, confidentiality, and
availability, ensuring compliance with data protection regulations and fostering trust
with their customers. In this section, we will explore various storage platforms and
their diverse security options for safeguarding your datafiles, providing you with the
tools and knowledge needed to make informed decisions about the security measures
best suited to your organization’s needs.

Securing Files: Best Practices

Securing your Apache Iceberg table’s datafiles, regardless of your chosen storage
platform, requires adherence to fundamental principles and best practices to ensure
comprehensive data protection. Here are some overarching principles and best prac-
tices to consider:

Least privilege access
Limit access to datafiles to only those individuals and processes that require it
for their specific tasks. Grant the minimum level of permissions necessary to
perform these tasks.

Encryption at rest and in transit
Enforce encryption of datafiles both at rest and in transit. Utilize the encryption
mechanisms provided by your storage platform to safeguard data integrity and
confidentiality.

Strong authentication and identity management
Implement robust identity and access management practices. Leverage multifac-
tor authentication (MFA) and strong password policies to verify user identities.

244 | Chapter 12: Governance and Security

Audit trails and logging
Enable auditing and logging features provided by your storage platform. Main-
tain comprehensive audit trails to monitor and investigate access to and changes
to data files.

Data retention and disposal policies
Define data retention and disposal policies to manage the lifecycle of datafiles.
Safely delete or archive files that are no longer needed to reduce risk exposure.

Continuous monitoring
Implement continuous monitoring and alerting systems to detect and respond to
security incidents in real time.

In the context of file-level security for Apache Iceberg tables, there are both advan-
tages and disadvantages to consider. On the positive side, it offers granular control,
allowing for precise permissions and encryption settings for individual datafiles.
This level also supports data encryption at rest, ensuring the security of sensitive
information, and it enables strict data isolation to minimize unauthorized access
risks. However, there are drawbacks, including the complexity of managing security
at the file level, particularly as the volume of files increases. Additionally, it may need
more abstraction to provide a unified and simplified data view to end users and tools.
Lastly, scalability can be challenging when managing permissions for a growing data
lakehouse, potentially leading to errors and inefficiencies.

Hadoop Distributed File System

Securing your datafiles within Apache Iceberg tables when stored on the Hadoop Dis-
tributed File System (HDFS) demands a comprehensive approach to protect against
vulnerabilities and ensure data confidentiality and integrity. Three key components
are pivotal in this endeavor.

Access control lists

Access control lists (ACLs) in HDFS allow you to exert fine-grained control over
who can access specific files and directories within your Iceberg data lakehouse. With
ACLs, you can precisely define permissions for individual users or groups, going
beyond the standard read, write, and execute permissions. This level of granularity
ensures that only authorized personnel can access sensitive data, minimizing the risk
of unauthorized access or data breaches.

To set ACLs for a file or directory, you can use the following commands:

Set an ACL to grant read and write access to a specific user
hdfs dfs -setfacl -m user:username:rwx /path/to/your/file_or_directory

Grant read access to a specific group
hdfs dfs -setfacl -m group:groupname:r-x /path/to/your/file_or_directory

Securing Datafiles | 245

Encryption

Encrypting data at rest is paramount to safeguarding your datafiles. HDFS ofters
robust encryption options, including transparent data encryption (TDE) and encryp-
tion zones. TDE encrypts data blocks on disk, rendering data unreadable to unau-
thorized entities even if the physical storage media is compromised. Encryption zones
allow you to specify specific directories or files that require encryption, enabling you
to focus encryption efforts on the most critical data.

To enable TDE for an HDES cluster, you can use the following commands:

Enable Transparent Data Encryption (TDE) for HDFS
hdfs crypto -createZone -keyName myEncryptionKey -path /path/to/encryption/zone

Permissions

HDES adopts a permission system akin to traditional filesystems, empowering you to
manage datafile access systematically. Through commands such as chmod and chown,
you can allocate specific permissions to users and groups, dictating who can read,
write, or execute files and directories. Properly configuring permissions ensures that
only the right individuals or processes can access the data, mitigating the risk of data
misuse.

To set permissions for a file or directory, you can use the following commands:

Change the owner of a file or directory
hdfs dfs -chown newowner:newgroup /path/to/your/file_or_directory

Change permissions to grant read, write, and execute to the owner
hdfs dfs -chmod 700 /path/to/your/file_or_directory

Securing your Apache Iceberg data on HDFS necessitates combining these robust
security measures tailored to your specific requirements. You can fortify your data
lakehouse’s defenses by emphasizing ACLs for precise access control, encryption
for data confidentiality, and permissions for structured access rights management.
This multifaceted security approach ensures that your data remains confidential and
tamperproof, fortifying your data assets’ integrity and trustworthiness.

Amazon Simple Storage Service

Securing the datafiles of an Apache Iceberg table on Amazon Web Services (AWS)
involves using various security features offered by Amazon Simple Storage Service
(Amazon S3). This section will guide you in using some of the most important
features of file-level security, which generally revolves around encrypting and
controlling access to your files’ security.

246 | Chapter 12: Governance and Security

Encryption

Amazon S3 provides three server-side encryption (SSE) options to safeguard data at
rest. Choose the one that best fits your security requirements.

SSE-S3 (SSE with S3-managed keys). This option is straightforward and suitable for
most use cases. Amazon S3 automatically manages encryption keys. Use the following
code to enable SSE-S3 for your S3 bucket using the AWS CLI:

aws s3apl put-bucket-encryption --bucket YOUR_BUCKET_NAME --server-side-
encryption-configuration '{"Rules": [{"ApplyServerSideEncryptionByDefault":
{"SSEAlgorithm": "AES256"}}]}'

SSE-KMS (SSE with the AWS Key Management Service). This option leverages the AWS
Key Management Service (KMS) for advanced key management. It’s ideal for scenar-
ios involving regulatory compliance or strict corporate security policies.

To enable SSE-KMS for your S3 bucket, you can use the AWS CLI with your KMS key
ID:

aws s3api put-bucket-encryption --bucket YOUR_BUCKET_NAME --server-side-
encryption-configuration '{"Rules": [{"ApplyServerSideEncryptionByDefault":
{"SSEAlgorithm": "aws:kms", "KMSMasterKeyID": "YOUR_KMS_KEY_ID"}}1}'

SSE-C (SSE with customer-provided keys). SSE-C provides the highest level of control.
You supply your encryption keys for data encryption and decryption, and Amazon S3
has no access to or storage of the keys.

To enable SSE-C for your S3 bucket, you can specify the customer-provided key in
the AWS CLL:

aws s3apl put-bucket-encryption --bucket YOUR_BUCKET_NAME --server-side-
encryption-configuration '{"Rules": [{"ApplyServerSideEncryptionByDefault":
{"SSEAlgorithm": "AES256"}}], "CustomerAlgorithm": "AES256"}'

To configure server-side encryption for an Apache Iceberg table on AWS S3, you can
utilize the following table configuration properties (these are Iceberg table settings,
not AWS settings):

o Property: s3.sse.type

Default: none

Description: This specifies the type of SSE to use. You can choose from none, S3,
KMS, or custom.

Securing Datafiles | 247

o Property: s3.sse.key
Default: aws/s3 for the KMS type, null otherwise

Description: For the KMS type, this property should be set to the KMS key ID or
Amazon resource name (ARN). For other types, such as custom, you can provide
a custom base-64 AES-256 symmetric key.

o Property: s3.sse.md5
Default: null

Description: This property is relevant when the SSE type is set to custom. It
should be set as the base-64 MD5 digest of the symmetric key to ensure data
integrity.

Bucket policies

To control access at the bucket level using Amazon S3 bucket policies, follow these
steps:

1. Create a bucket policy in JSON format with specific rules.

2. Attach the policy to your S3 bucket using the AWS Management Console or AWS
CLL

Here’s an example policy that allows access only from a specific IP address:

{
"Version": "2012-10-17",
"Statement": [
{
"Sid": "AllowSpecificIP",
"Effect": "Allow",
"Principal”: "*",
"Action": "s3:GetObject",
"Resource": "arn:aws:s3:::YOUR_BUCKET_NAME/*",
"Condition": {
"IpAddress": {
"aws:SourceIp": "YOUR_IP_ADDRESS"

}

}
Attach this policy to your S3 bucket using the AWS Management Console or AWS CLI:

aws s3apl put-bucket-policy --bucket YOUR_BUCKET_NAME --policy '{
"Version": "2012-10-17",
"Statement": [

{
"Sid": "AllowSpecificIP",

248 | Chapter 12: Governance and Security

"Effect": "Allow",
"Principal”: "*",
"Action": "s3:GetObject",
"Resource": "arn:aws:s3:::YOUR_BUCKET_NAME/*",
"Condition": {
"IpAddress": {
"aws:SourcelIp": "YOUR_IP_ADDRESS"

}

} 1
Identity and Access Management

To use AWS Identity and Access Management (IAM) to create and manage user roles
and permissions for accessing your S3 resources, follow these steps:

1. Create IAM users, roles, or groups based on your organization’s needs.

2. Define policies that specify the actions and resources users can access (e.g.,
s3:GetObject, s3:PutObject).

3. Attach policies to IAM users, roles, or groups to grant them access to specific S3
buckets or objects.

IAM policies can be highly granular, allowing for precise control over actions and
resources.

Here’s an example of a CLI command to attach an IAM policy to a particular IAM
user, allowing them to read (s3:GetObject) and write (s3:PutObject) to a specific S3
bucket:

aws iam put-user-policy --user-name YOUR_IAM_USER_NAME --policy-name S3Access
Policy --policy-document '{
"Version": "2012-10-17",
"Statement": [
{
"Effect": "Allow",
"Action": [
"s3:GetObject",
"s3:PutObject"
] k]
"Resource": "arn:aws:s3:::YOUR_BUCKET_NAME/*"
}
1
} 1
In this example, you can use the AWS CLI command aws iam put-user-policy to
attach a policy to a specific IAM user. To execute this command, you need to replace

YOUR_IAM_USER_NAME with the actual username of the IAM user to which you want

Securing Datafiles | 249

to attach the policy. The - -policy-name option allows you to provide a name for the
policy, which can be chosen to suit your requirements.

The crucial part of this process is --policy-document, where you define the per-
missions using a JSON policy document. In this particular case, the policy grants
the IAM user the permissions to perform s3:GetObject (read) actions and s3:Put
Object (write) actions on objects located within a specified S3 bucket. To specify the
S3 bucket and objects, you use the Resource parameter, which contains the ARN of
the S3 bucket and its contents. Be sure to replace YOUR_BUCKET_NAME in the ARN with
the actual name of the S3 bucket you want to grant access to.

By executing this command, you grant the IAM user permission to read and write
objects in the specified S3 bucket. Remember to replace placeholders with your actual
username and bucket name.

Object ACLs

Configuring object ACLs for individual datafiles or directories within your S3 bucket
allows you to set fine-grained permissions. This section provides details on how to
use this feature.

To access the properties of an object, you can follow these steps within the AWS
Management Console. Log in to your AWS Management Console and then navigate
to the S3 service. Next, click the bucket that houses the object for which you want
to configure ACLs. To pinpoint the specific object, click its name or navigate the
directory structure. Once you've located the object, select it to access its properties
and make the necessary ACL configurations.

Alternatively, you can follow these steps to access the object’s properties using the
AWS CLI. Begin by opening your terminal or command prompt. Then utilize the
AWS S3 CLI commands to gain access to the object’s properties. Here is a practical
example:

aws s3apl put-object-acl --bucket your-bucket-name --key path/to/your-object --

acl private --grant-read id="YOUR_IAM_USER_ID"
In this scenario, you can use the AWS CLI command aws s3api put-object-acl
to make adjustments to the ACL of an object stored in an AWS S3 bucket. By
specifying --bucket your-bucket-name, you indicate the name of the S3 bucket
where the object is located. The --key path/to/your-object parameter denotes
the precise path to the object within the bucket that you intend to modify. Setting
--acl private ensures that the ACL is configured as private, thereby restricting
access to the object to its owner by default. Furthermore, using --grant-read
1d="YOUR_IAM_USER_ID" allows you to grant read permissions to a specific IAM
user, identified by their unique IAM user ID or ARN. It’s essential to replace the

250 | Chapter 12: Governance and Security

placeholder "YOUR_IAM_USER_ID" with the actual IAM user ID or ARN to specify
who should have read access to the object.

By running this command, you restrict access to the specified object, allowing only
the IAM user with the provided ID to read it. You can adapt this example to grant
different permissions or specify different IAM entities.

Object ACLs can become complex to manage at scale, especially when dealing with
numerous objects and varying access requirements. It's important to have a well-
defined and documented access control strategy to avoid unintended permissions
and potential security risks. Also keep in mind the pros and cons of using IAM roles
and ACLs.

Azure Data Lake Storage

Securing datafiles in Azure Data Lake Storage (ADLS) for Apache Iceberg tables
involves using various security features primarily around encrypting your files and
controlling access to them. This section discusses how to take advantage of these
security features.

ADLS encryption

Securing your datafiles in ADLS involves encrypting data at rest, and you can choose
between default encryption and customer-managed keys for enhanced security. Fol-
lowing are detailed steps, including relevant CLI commands, for enabling customer-
managed keys in ADLS.

An Azure Key Vault is a secure way to manage and control access to your encryption
keys. Follow these steps to create and configure an Azure Key Vault.

Start by using the Azure portal, Azure CLI, or Azure PowerShell to create an Azure
Key Vault:

az keyvault create --name YourKeyVaultName --resource-group YourResourceGroup
--location YourlLocation

Replace YourKeyVaultName, YourResourceGroup, and YourLocation with appropriate
values. You can then either generate your encryption keys within the Key Vault or
import existing keys:

az keyvault key create --vault-name YourKeyVaultName --name YourKeyName --kty RSA
Replace YourKeyVaultName and YourKeyName with appropriate values.

Now that you have set up your Azure Key Vault and created or imported your
encryption keys, you can configure ADLS to use these customer-managed keys.
Ensure that the Azure ADLS account or the service principal you plan to use has the
necessary permissions to access the keys in your Azure Key Vault.

Securing Datafiles | 251

https://oreil.ly/wPnGI
https://oreil.ly/wPnGI

Now use the Azure portal or Azure CLI to link your ADLS account to your Azure
Key Vault:

az storage account update --name YourStorageAccountName --resource-group Your
ResourceGroup --assign-identity [system] --keyvault YourKeyVaultName
Replace YourStorageAccountName, YourResourceGroup, and YourKeyVaultName with
appropriate values.

To maintain security, only authorized personnel should have access to the Azure Key
Vault for key management. To configure access policies within the Key Vault, use the
Azure portal, Azure CLI, or Azure PowerShell to add an access policy that grants
appropriate permissions to individuals or applications:

az keyvault set-policy --name YourKeyVaultName --resource-group YourResourceGroup
--spn YourServicePrincipalName --key-permissions get list

Replace YourKeyVaultName, YourResourceGroup, and YourServicePrincipalName
with appropriate values and specify the required permissions.

Role-Based Access Control

Role-based access control (RBAC) in Azure allows you to define and manage who can
perform actions on your ADLS resources. Here are detailed steps, along with relevant
Azure CLI commands, to implement RBAC in Azure for ADLS.

Before implementing RBAC, ensure that you have ADLS resources created and con-
figured appropriately. Now you can create an ADLS account using the Azure portal,
Azure CLI, or Azure PowerShell:

az dls account create --name YourADLSAccountName --resource-group YourResource
Group --location YourLocation --tier TierName --encryption-type ServiceManaged

Replace YourADLSAccountName, YourResourceGroup, YourLocation, and TierName
with appropriate values.

Azure offers predefined roles suitable for ADLS resources, such as “Storage Blob Data
Contributor” However, you can create custom roles with specific permissions tailored
to your organization’s needs.

Use the Azure CLI to list existing built-in roles for ADLS:
az role definition list --resource-type Microsoft.DatalLakeStore/accounts

If predefined roles dont meet your requirements, you can create a custom role.
Define the permissions required for your custom role:

az role definition create --role-definition CustomRoleDefinition.json

Replace CustomRoleDefinition.json with the JSON file containing your custom
role definition.

252 | Chapter 12: Governance and Security

Once you have defined the appropriate roles, you can assign them to users, groups, or
service principals to control access to your ADLS resources.

Use the Azure CLI to assign a predefined role to a user, group, or service principal:

az role assignment create --assignee YourPrincipalName --role "Storage Blob
Data Contributor" --scope /subscriptions/YourSubscriptionId/resourceGroups/Your
ResourceGroup/providers/Microsoft.DatalLakeStore/accounts/YourADLSAccountName

Replace YourPrincipalName, YourSubscriptionId, YourResourceGroup, and Your

ADLSAccountName with appropriate values.

If you created a custom role, use a similar command to assign it. If you need to
revoke access, you can remove a role assignment:

az role assignment delete --assignee YourPrincipalName --role "Storage Blob
Data Contributor" --scope /subscriptions/YourSubscriptionId/resourceGroups/Your
ResourceGroup/providers/Microsoft.DatalLakeStore/accounts/YourADLSAccountName

To maintain security and compliance, regularly review and audit access permissions
assigned through RBAC. Ensure that users, groups, and service principals have the
appropriate level of access according to the principle of least privilege.

ACLs

ACLs in ADLS provide fine-grained control over access permissions for individual
users, groups, or service principals at both the directory and file levels. Here are
detailed steps, including relevant Azure CLI commands, for configuring ACLs in
ADLS.

To configure ACLs, you can use either the Azure portal or Azure CLI to access your
ADLS account. Log in to the Azure portal and navigate to your ADLS account.

Open your terminal or command prompt:
az login

Use the following Azure CLI command to set the default subscription (if it's not
already set):

az account set --subscription YourSubscriptionName

Once you've accessed your ADLS account, navigate to the specific directory or file
for which you want to set ACLs. Use the Azure portals user interface to browse and
select the desired directory or file.

With the Azure CLI, list the contents of a directory or get information about a
specific file:

az dls fs list --account YourADLSAccountName --path /your/directory/path

You can use the following Azure CLI command to get file information:

Securing Datafiles | 253

https://portal.azure.com

az dls fs show --account YourADLSAccountName --path /your/file/path

Replace YourADLSAccountName, /your/directory/path, and /your/file/path with
appropriate values.

You can configure ACLs by defining access permissions for users, groups, or service
principals. Within the Azure portal, navigate to the directory or file and access the
“Access control (IAM)” or Permissions section. Next, add or modify the permissions
for specific users, groups, or service principals.

Use the Azure CLI to set ACLs for a specific directory or file:

az dls fs access set --account YourADLSAccountName --path /your/directory/path
--acl-spec "user::rwx,group::r--,other::---"

Here is the Azure CLI command to set the ACL for a file:

az dls fs access set --account YourADLSAccountName --path /your/file/path
--acl-spec "user::rw-,group::r--,other::---"
Replace YourADLSAccountName, /your/directory/path, and /your/file/path with
appropriate values. Adjust the ACL specification (- -acl-spec) as needed to grant or
deny permissions.

When configuring ACLs, ensure that the permissions granted align with your organ-
ization’s security policies. Regularly review and audit ACL settings to maintain secu-
rity and compliance.

By following these steps and utilizing the provided Azure CLI commands, you
can effectively configure ACLs in ADLS to manage fine-grained access permissions
for directories and files, ensuring data security and compliance with organizational
policies.

Google Cloud Storage

Google Cloud Storage (GCS) offers security features to protect your datafiles, includ-
ing encryption, identity and access management, bucket policies, and object ACLs. In
this section, we provide the steps with CLI commands on how to use these security
features.

Encryption at rest and in transit

GCS automatically encrypts your data at rest using SSE with Google-managed keys.
To add an extra layer of control, you can opt for customer-managed encryption keys
(CMEK), where you manage the encryption keys.

254 | Chapter 12: Governance and Security

Start by creating a cloud KMS keyring and key:

gcloud kms keyrings create your-keyring --location global
gcloud kms keys create your-key --location global --keyring your-keyring
--purpose encryption

Now assign the CMEK to a bucket:

gsutil kms authorize -k projects/your-project/locations/global/keyRings/your-
keyring/cryptoKeys/your-key
gsutil defacl set private gs://your-bucket-name
GCS ensures that data is encrypted during transit using industry-standard protocols
such as HT'TPS.

Identity and access management

Google cloud identity and access management (IAM) allows you to control who can
access your GCS resources and define the actions they can perform. IAM roles are
used to assign fine-grained access control.

Here is the code to create a service account and grant it a role with the necessary
permissions:

gcloud iam service-accounts create your-service-account

gcloud projects add-iam-policy-binding your-project --member serviceAccount:
your -service-account@your-project.iam.gserviceaccount.com --role roles/
storage.objectAdmin

Now use this code to authenticate as the service account to access GCS:

gcloud auth activate-service-account --key-file=your-service-account-key.json

Bucket policies

GCS allows you to configure bucket-level access controls using bucket policies, which
let you set rules for access based on factors such as IP addresses, requesters, or
conditions.

Start by defining a JSON bucket policy specifying the access rules:
{

"bindings": [
{
"role": "roles/storage.objectViewer",
"members": ["user-email@example.com"]
}
1
}

Now apply the bucket policy to your bucket:

gsutil iam set your-policy.json gs://your-bucket-name

Securing Datafiles | 255

Object ACLS

GCS supports ACLs for individual objects within a bucket, allowing you to specify
who can read, write, or delete specific objects.

Configure the ACL for a specific object using the following code:
gsutil acl ch -u user-email@example.com:READ gs://your-bucket-name/your-object

By following these steps and using the provided CLI commands, you can effectively
leverage the security features of GCS object storage to safeguard your Apache Iceberg
table’s datafiles, ensuring confidentiality, integrity, and controlled access to meet your
organization’s security requirements.

Securing and Governing at the Semantic Layer

A semantic layer is a virtual abstraction atop your data lakehouse, providing a struc-
tured and business-friendly view of the underlying data. It acts as a translation layer,
allowing users and applications to interact with data in a way that’s intuitive and
meaningful to them without needing to understand the complexities of the data’s
storage or schema. This layer enables governance and security by centralizing control
over data access, defining fine-grained permissions, and applying data masking and
transformation rules. It simplifies data management, ensuring data consistency, qual-
ity, and compliance with organizational policies, all while shielding users from the
underlying data intricacies. A semantic layer empowers organizations to manage and
secure their data lakehouse efficiently.

Semantic layers enable performance to make the data useful, so they often contain
features to precompute aggregation metrics such as Dremios aggregate reflections.
Let’s look at some semantic layer solutions that may work with Apache Iceberg tables.

Semantic Layer Best Practices

A well-designed and secure semantic layer is the cornerstone of effective data gover-
nance in a data lakehouse environment. Here are some best practices to consider
when crafting such a layer:

Understand your data
Start by deeply understanding the data sources in your data lakehouse. Identify
the types of data, data owners, and sensitivity levels. This understanding will
inform your data governance and security decisions. Semantic layer platforms
will enable you to label and tag your data to help make this classification
more explicit.

256 | Chapter 12: Governance and Security

Define clear access control policies
Develop a comprehensive access control policy that defines who can access what
data and what actions they can perform. Use RBAC and attribute-based access
control (ABAC) to ensure that only authorized users can access sensitive data.

Implement data masking
Data masking protects sensitive data. Implement masking rules to ensure that
sensitive information is obfuscated when accessed by unauthorized users. Con-
sider column-level masking for sensitive attributes such as personal identifiable
information (PII).

Maintain data lineage
Keep track of the data flow within your semantic layer. Data lineage helps you
understand how data is transformed and consumed, which is crucial for ensuring
data quality and compliance.

Document everything
Maintain detailed documentation of your data governance and security policies,
access controls, catalogs, and lineage. Documentation is essential for transpar-
ency, compliance, and troubleshooting.

When securing your Apache Iceberg tables at the semantic layer level, there are
advantages and disadvantages to consider. On the positive side, this layer offers
unified access to data, serving as a consistent entry point for queries and enabling
standardized data governance and security policies. It also provides data abstraction,
simplifying the data view for end users and tools, thus facilitating easier querying and
analysis. However, there are drawbacks, including the risk of a single point of failure
when relying solely on the semantic layer, potentially impacting query availability.

Dremio

The Dremio semantic layer offers a robust solution for governing, monitoring, and
securing your data within a data lakehouse environment. Dremio provides several
features for governing and securing your data lakehouse.

Data lineage of virtual datasets

Dremio’s semantic layer allows you to create virtual datasets that abstract the underly-
ing data complexity. It provides a clear and intuitive way to visualize the data lineage,
helping users understand how different virtual datasets are derived from the raw data.
This lineage tracking is invaluable for auditing, compliance, and understanding the
transformation history of your data. Figure 12-1 provides an example.

Securing and Governing at the Semantic Layer | 257

| FlattenedSchema (edit=d) (2 Data 3 Details E L

Spaca.Foklar

4y Reflections

Focus “FlaltenedSchema”

Sources (1) Parents (6) Q
A ARCTIC Eiif] weknown 1 =
V' pemo . f

abeLireid

abcprdus_d
abcondend
FHEwanoy

#tiscount
abereumedFiag
Eroranate
= aninmne

[receipiane

Figure 12-1. Viewing data lineage from the Dremio semantic layer (in the book’s GitHub
repository, a larger version of this image is available)

Built-in wiki for documentation

The semantic layer includes a built-in wiki feature, making it easy to document your
catalogs, virtual datasets, and folders. Documentation is crucial for data governance,
as it helps users understand data semantics, business logic, and data source informa-
tion. With Dremio’s wiki, you can create and maintain rich documentation alongside
your data, ensuring clarity and transparency. You can see an example of a wiki entry
for a particular dataset in Figure 12-2.

~ Wiki

Dataset Summary: This dataset contains information about orders, products, customers, and addresses within a space folder.
Columns Summary:

Lineld (TEXT) - The line id of the order.

product_id (TEXT) - The id of the product.

orderId (TEXT) - The id of the order.

quantity (INTEGER) - The quantity of the product in the order.
discount (FLOAT) - The discount applied to the product.
returnedFlag (TEXT) - Flag indicating if the product was returned.
orderDate (DATETIME) - The date of the order.

shipDate (DATE) - The date the order was shipped.

receiptDate (DATE) - The date the order was received.

Figure 12-2. The Dremio wiki feature

Role-, column-, and row-based access rules

Dremios semantic layer empowers you to enforce fine-grained access control over
your data. You can define access rules at multiple levels.

258 | Chapter 12: Governance and Security

https://oreil.ly/supp-guide-apache-iceberg
https://oreil.ly/supp-guide-apache-iceberg

Role-based access control. At the RBAC layer, you can create roles that represent differ-
ent user categories. For example, you can create roles such as analyst, manager, and
admin:

CREATE ROLE analyst;
CREATE ROLE manager;
CREATE ROLE admin;

You also can specify which roles should have access to specific datasets or virtual
datasets:

GRANT SELECT ON VDS_sales_data TO analyst;
GRANT SELECT, UPDATE ON VDS_employee_data TO manager;

And you can map individual users or groups to the defined roles:

GRANT analyst TO useril;
GRANT manager TO user2;

With RBAC, only users belonging to authorized roles can interact with datasets. For
example:

o Userl, assigned the analyst role, can access VDS_sales_data.

o User2, assigned the manager role, can access and update VDS_employee_data.

Column-based access control. Column-based access controls allow masking the content
in a particular column when different conditions are true, such as the user having a
particular role. This can be used to help hide sensitive PII from those who shouldn’t
have access to it but can use other columns for analytics. In Dremio, these controls
are achieved by applying user-defined functions (UDFs) that test certain conditions
and return what the user should see:

-- Create the mask_salary UDF

CREATE FUNCTION mask_salary(salary VARCHAR)

RETURNS VARCHAR

RETURN SELECT CASE
WHEN query_user()="user@example.com' OR is_member('HR') THEN salary
ELSE 'XXX-XX'

END;

-- Create the employee_salaries table with the column masking policy
CREATE TABLE employee_salaries (

id INT,

salary VARCHAR MASKING POLICY mask_salary (salary),

department VARCHAR
);

Row-based column access. Row-based column access allows masking the content in a
particular row when different conditions are true, such as the user having a particular

Securing and Governing at the Semantic Layer | 259

role. This can be used to hide records from those who shouldn’t have access to it but
can use other rows for analytics. In Dremio, these controls are achieved by applying
UDFs that test certain conditions and return what the user should see:

-- Create the restrict_region UDF

CREATE FUNCTION restrict_region(region VARCHAR)

RETURNS BOOLEAN

RETURN SELECT CASE
WHEN query_user()="'user@example.com' OR is_member('HR') THEN true
WHEN region = 'North' THEN true
ELSE false

END;

-- Create the regional_employee_data table with the row access policy
CREATE TABLE regional_employee_data (

id INT,

role VARCHAR,

department VARCHAR,

salary FLOAT,

region VARCHAR,

ROW ACCESS POLICY restrict_region(region)

);
By leveraging these access control mechanisms, you can ensure that data is accessed,
transformed, and presented in compliance with your organization’s security and
governance policies.

Trino

Trino, formerly known as PrestoSQL, is an open source distributed SQL query engine
designed for high-performance data processing across various data sources. Trino
enables the creation of a semantic layer with its ability to create layers of logic views
over your federated data sources, with controls on access to those views.

There are two security modes to choose from when creating views, DEFINER and
INVOKER:

DEFINER
In this security mode, tables referenced in the view are accessed using the per-
missions of the view owner, which is the creator or definer of the view. This mode
allows you to provide restricted access to the underlying tables, even if the user
executing the query may not have direct access to those tables.

INVOKER
When you create a view in this security mode, tables referenced in the view are
accessed using the permissions of the user executing the query, known as the
invoker of the view. In this mode, the view essentially acts as a stored query. It
provides a way to ensure that access to the underlying data is determined by the
user running the query.

260 | Chapter 12: Governance and Security

Regardless of the security mode chosen, you can always use the current_user
function within views to identify the user executing the query. This allows you to
implement row-level filtering or other access restrictions within your views.

Trino provides RBAC as a critical component of its security model. RBAC enables
organizations to manage and control access to data by assigning roles to users and
granting specific privileges to those roles. This ensures that only authorized users can
perform specific actions on data, helping to enforce data security and compliance
with organizational policies.

To begin using Trino’s RBACs, you need to create roles. Roles are essentially named
groups that you can assign to users or other roles. Use the CREATE ROLE command to
create roles:

CREATE ROLE analyst;
CREATE ROLE data_scientist;

In the preceding example, we created two roles: analyst and data_scientist.

After creating roles, you can assign them to users or other roles using the GRANT
command. This allows you to define who belongs to each role:

GRANT analyst TO USER alice;

GRANT data_scientist TO USER bob;

Here, we assigned the analyst role to the user alice and the data_scientist role to
the user bob.

Roles in Trino can be associated with specific privileges that define what actions users
in those roles can perform. You can use the GRANT command to grant privileges on
tables, schemas, or other objects to roles:

GRANT SELECT ON orders TO analyst;

GRANT INSERT, SELECT ON customer_data TO data_scientist;
In this example, we granted the analyst role the privilege to perform SELECT queries
on the orders table and the data_scientist role the privilege to perform both
INSERT and SELECT operations on the customer_data table.

You can also use the REVOKE command to remove privileges from roles or revoke
roles from users:

REVOKE SELECT ON orders FROM analyst;
REVOKE data_scientist FROM USER bob;

These commands allow you to refine and modify access control as needed.
Trino also allows you to specify role administrators who have the authority to grant

or revoke roles. You can use the WITH ADMIN clause when creating roles or the
GRANTED BY clause when granting roles:

Securing and Governing at the Semantic Layer | 261

CREATE ROLE admin WITH ADMIN USER admin_user;
GRANT admin TO USER alice GRANTED BY admin_user;

In this example, the admin_user is designated as the role admin for the admin role,
and admin_user can grant the admin role to alice.

RBAC:s are particularly valuable for controlling access to sensitive data within your
organization. By carefully defining roles and their associated privileges, you can
ensure that only authorized users have access to critical information.

Trinos RBACs provide a way to manage access to data, making it easier to enforce
security policies and meet compliance requirements within your organization.

Securing and Governing at the Catalog Level

Your data catalog is the backbone of your data lakehouse architecture, managing
metadata and enabling efficient query execution. This section explores strategies for
securing and governing the Apache Iceberg catalog so that you can maintain control
over data assets.

Some Apache Iceberg catalogs go beyond merely tracking your Apache Iceberg meta-
data; they also offer robust security features that provide a mechanism for securing
your Iceberg tables effectively. These security features enhance data protection and
access control within your data lakehouse environment.

What makes these security features particularly valuable is their potential for porta-
bility between different query engines. This means that the security policies and
access controls you define within the Iceberg catalog can be enforced consistently
across various query engines, ensuring a uniform layer of data security regardless of
how you query and analyze your data. This portability simplifies the management of
security policies and minimizes the risk of security gaps when transitioning between
query engines or integrating multiple tools within your data ecosystem. Let’s examine
some of the possible security features of some Apache Iceberg catalogs.

When it comes to securing your Apache Iceberg tables at the catalog level, several
advantages and disadvantages come into play. On the positive side, catalogs offer cen-
tralized metadata management, enabling the enforcement of consistent governance
policies and metadata-driven security measures. They also support fine-grained
access control at this level, granting comprehensive authority over who can access
and manipulate tables and databases. Furthermore, catalogs abstract the underlying
file structure, simplifying data access for both users and tools. However, there are
drawbacks, including the dependency on the catalog for metadata and access control,
which means that any catalog issues can impact data access. Additionally, managing
intricate access control policies at the catalog level can be challenging depending on
the chosen solution. As the catalog grows, handling permissions and metadata can
become more intricate, affecting scalability.

262 | Chapter 12: Governance and Security

Nessie

Nessie’s metadata authorization feature is crucial in creating portable governance
and security for your Apache Iceberg data lakehouse. While Nessie primarily man-
ages metadata, it offers a powerful authorization layer that controls access to this
metadata. It's important to note that Nessie doesn’t directly store data but manages
data location and metadata. Therefore, its authorization layer primarily focuses on
controlling access to this metadata, ensuring that only authorized users or roles can
interact with the metadata stored in Nessie.

The authorization scope of Nessie is centered on controlling access to references
(branches and tags) and paths within the metadata. Users and roles can be granted
specific permissions for various reference operations, such as viewing, creating, and
assigning a hash, or deleting references. Similarly, access control is applied to paths,
enabling operations such as creating, deleting, and updating entities’ content within a
specific reference.

Access to historical data is a key feature of Nessie, allowing users to view data at
different times. However, it’s important to note that Nessie’s authorization primarily
covers metadata, and additional security measures should be in place to prevent
unauthorized access to data stored in the data lake. For example, sensitive data
should be removed or masked from tables, and appropriate access controls should be
enforced on the datafile itself.

Nessie’s access control model is designed around references and paths, allowing for
fine-grained control over metadata operations. Users can define authorization rules
using a Common Expression Language (CEL) expression, which provides flexibility
in specifying access control conditions. These rules are defined in the application.
properties file and are associated with specific operations, roles, references, and paths.
For example, rules can be created to grant or deny permissions for viewing, creating,
deleting, or updating references and entities based on various conditions, including
roles and reference names.

Lets look at some examples of managing permissions to Nessie branches through
application.properties.

In this example code, users with the roles analyst and viewer can view (list) branches
and tags:

nessie.server.authorization.rules.allow_branch_listing=op=='VIEW_REFERENCE' &&
role in ['analyst', 'viewer']

Securing and Governing at the Catalog Level | 263

Here, users with the data_admin role can create branches that match the regex
pattern . *prod.*. This allows them to create branches with names containing “prod”:

nessie.server.authorization.rules.allow_branch_creation=op=='CREATE_REFERENCE' &&
role=="data_admin' && ref.matches('.*prod.*")

With this code, users with the roles data_admin and super_admin can delete branches
and tags:

nessie.server.authorization.rules.allow_branch_deletion=op=='DELETE_REFERENCE' &&
role in ['data_admin', 'super_admin']
With the following code, users with the roles analyst and viewer can read entity
values if the path starts with 'data/":

nessie.server.authorization.rules.allow_reading_
entity_value=op=='READ_ENTITY_VALUE' && role
in ['analyst', 'viewer'] && path.startsWith('data/')
Here, users with the data_admin role can update or delete the entity with the path
'"data/sensitive':
nessie.server.authorization.rules.allow_updating_specific_entity=op in ['UPDATE_
ENTITY', 'DELETE_ENTITY'] && role=='data_admin' && path=='data/sensitive'
In essence, Nessie’s metadata authorization feature serves as a critical layer of gover-
nance and security for your Apache Iceberg data lakehouse by controlling access to
metadata. By defining and enforcing authorization rules, organizations can ensure
that only authorized users and roles can interact with the metadata, helping to
maintain data integrity and security. However, its essential to complement Nessie’s
metadata authorization with broader data lake security measures to safeguard the
actual data stored in the lakehouse.

Tabular

Tabular is a cloud-native headless warehouse (a layer for storage management decou-
pled from any particular query engine or compute) and automation platform offering
a unified solution for managing analytic data with Apache Iceberg tables. It is a cen-
tralized hub for Apache Iceberg data storage and cataloging, focusing on versatility
and efficiency. Tabular features an access control framework designed to govern and
secure access to platform resources. We will outline its key elements.

Tabular adopts an RBAC model, where access privileges are assigned to roles, and
roles are subsequently assigned to individuals or other roles.

Roles are entities to which access privileges are granted and can be assigned to
individuals and other roles. Privileges, conversely, define the level of access to a
resource, including LIST, SELECT, UPDATE, and more. Users receive a cumulative set of

264 | Chapter 12: Governance and Security

privileges based on their roles. There are three system-defined roles that exist out of
the box that can be used for defining access:

ORG_ADMIN (organization administrator)
Responsible for overseeing organizational-level operations, including renaming
and deleting the organization, managing users within the SECURITY_ADMIN role,
and accessing usage and billing information.

SECURITY_ADMIN
Manages global resource grants and creates, monitors, and manages users and
roles. This role implicitly holds the MANAGE GRANTS security privilege.

EVERYONE
Automatically granted to all individuals and roles in the organization. This role
carries inherent privileges on resources and is typically utilized when explicit
access control is not required.

Users can define additional roles without necessitating special privileges. These roles
can be equipped with specific privileges to regulate resource access.

AWS Glue and Lake Formation

The AWS Glue catalog enables managing metadata for your data lakehouse on
AWS. In addition to its metadata management capabilities, the AWS Glue catalog
offers robust security features, mostly through the AWS Lake Formation service, that
empower organizations to govern and secure their data lakes.

AWS Lake Formations tag-based access control (TBAC) is a valuable feature that
allows you to control access to tables and data stored in your AWS Glue Data catalog
based on the tags associated with those resources. With TBAC, you can enforce
fine-grained access control policies by using tags to categorize and restrict access
to specific datasets. Here is how to use Lake Formation’s TBAC to control access to
tables in your AWS Glue catalog.

Define data categories with tags

Start by categorizing your data resources by assigning tags to tables or other metadata
objects in your AWS Glue Data catalog. Tags can represent various data attributes,
such as sensitivity levels, data owners, or project names. For example, you might tag a
table with “Confidential,” “Finance,” or “ProjectA.”

To assign tags to a table, you can use the AWS Glue Console, AWS CLI, or AWS
SDKs. Here is an example using the AWS CLI:

aws glue update-table --database-name mydatabase --table-input '{
"Name": "mytable",
"Parameters": {

Securing and Governing at the Catalog Level | 265

"TAGS": {
"sensitivity": "Confidential",
"project": "ProjectA"

} 1
Define data access policies with TBAC

Once you've tagged your tables, you can define data access policies based on those
tags using AWS Lake Formation. Access policies specify which users or groups are
allowed or denied access to tables based on the tags associated with the resource.

For example, you can create a policy that grants read access to tables tagged as
“ProjectA” only to members of the “ProjectA-Team” IAM group:

{
"Version": "2012-10-17",
"Statement": [

{
"Effect": "Allow",
"Action": "lakeformation:GetDataAccess",
"Resource": "*",
"Condition": {
"StringEquals": {
"glue:ResourceTag/project": "ProjectA"
}
1
"Principal”: {
"AWS": "arn:aws:iam::123456789012:group/ProjectA-Team"
}

}

You can create such policies using the AWS Lake Formation Console, AWS CLI, or
AWS SDKs.

Apply policies to datasets

After defining your access policies, you can apply them to datasets in your AWS Glue
Data catalog. These policies are associated with specific tags, so tables with matching
tags inherit the policies.

AWS Lake Formation will evaluate access requests based on these policies and tags.
Users or groups that match the policies will be granted access to the corresponding
tables, while others will be denied access.

266 | Chapter 12: Governance and Security

Monitor and audit access

AWS Lake Formation provides tools for monitoring and auditing access to your data
resources. You can use AWS CloudTrail to capture API calls related to data access,
allowing you to review who accessed your data and what actions were performed.

Review and revise policies as needed

Over time, your data access requirements may change. AWS Lake Formation allows
you to easily modify and update your access policies and tags as needed. You can
adapt your policies to accommodate new data categories or access requirements.

Leverage integration with other AWS services

AWS Lake Formation integrates seamlessly with other AWS services, such as AWS
IAM and AWS KMS, to provide additional security and encryption options for your
data lake.

By implementing TBAC in AWS Lake Formation, you can enforce strict data access
controls based on the tags associated with your data resources. This approach ensures
that only authorized users and groups can access sensitive data, helping you maintain
data security and compliance in your organization.

Additional Security and Governance Considerations

Securing and governing Apache Iceberg tables within your data lakehouse can be
approached at different levels, each with its own set of pros and cons. Here, we'll
explore the advantages and drawbacks of focusing on security and governance at the
file store level, semantic layer level, and catalog level.

When deciding where to focus your Apache Iceberg table security and governance
efforts, consider the following:

Use case
Different use cases may benefit from different levels of security and governance.
For example, highly sensitive data might require catalog-level control, while less
sensitive data could rely on the semantic layer.

Scalability
Consider the scalability of your data lakehouse. As your data grows, managing
permissions and governance policies may become more challenging at the file
store level.

Performance
Evaluate the performance requirements of your organization. A semantic layer
can optimize query performance, but it may introduce overhead.

Additional Security and Governance Considerations | 267

Data abstraction
Think about how abstracted and simplified you want data access to be for end
users and tools.

Operational overhead
Assess the operational overhead associated with each level of governance and
security.

Redundancy and failover
Consider redundancy and failover mechanisms to ensure availability and
reliability.

Conclusion

There is no one-size-fits-all approach to securing and governing Apache Iceberg
tables within a data lakehouse. The choice of focusing on the file store level, semantic
layer level, or catalog level should align with your organization’s specific require-
ments, use cases, and priorities. In many cases, a combination of these levels may be
the most effective way to achieve comprehensive security and governance.

In Chapter 13, we will explore how to move your existing data into Apache Iceberg tables.

268 | Chapter 12: Governance and Security

CHAPTER 13
Migrating to Apache lceberg

Organizations are constantly seeking innovative solutions to manage their data more
efficiently and effectively. Apache Iceberg has emerged as a powerful framework for
data lakes, offering a high-performance table format that operates like a relational
database management system (RDBMS) table. This chapter delves into the process of
migrating your data architecture to leverage the benefits of Apache Iceberg.

Why would you migrate to Apache Iceberg?

You don’t have a data lakehouse or are using the Hive table format
Apache Iceberg will supercharge the data on your data lake with ACID transac-
tions, schema/partition evolution, time travel, and more, effectively turning your
data lake into a data lakehouse that gives you the flexibility of data lakes with the
performance/features of data warehouses.

Iceberg offers unique benefits over other table formats
Apache Icebergs unique features include an open specification, open source
libraries, transparent project governance, diversity in project governance, no
vendor lock-in, and a diverse ecosystem.

While migrating to Apache Iceberg promises a more streamlined data architecture,
the process itself, as with any migration, can be intricate and demanding. The transi-
tion involves adapting existing data structures, modifying data ingestion pipelines,
and updating data processing workflows. Moreover, organizations may need to refac-
tor existing data models and restructure data storage in Iceberg-compatible formats.
Migrating also requires addressing backward-compatibility concerns and ensuring
that existing data seamlessly integrates with the new architecture. Throughout this
chapter, we will explore best practices and strategies to overcome these challenges
effectively. We divided the chapter into several sections, each addressing a specific
aspect of the migration process.

269

Migration Considerations

Data migration requires careful planning and adherence to best practices to ensure a
seamless and reliable process. This section serves as an essential foundation, outlining
the key factors to consider before embarking on the migration journey. We will
discuss best practices, common pitfalls, and how to approach data migration in a
structured manner. Here are some key considerations:

Adapting data structures

Before migrating data to Apache Iceberg, assess your existing data structures and
adapt them to align with Iceberg’s table format. This may involve restructuring
data, renaming columns, or adjusting data types to fit Iceberg’s requirements.
Ensuring data compatibility is crucial for a successful migration. Apache Iceberg
should be flexible enough for all kinds of data, but when it comes to complex
types, Iceberg offers lists, structs, and maps. So, for something like JSON data,
which may have its own field type in other platforms, you’ll have to decide
whether you want to convert the data into a map or save it as a string.

Adapting pipelines
Update your data pipelines to support writing data to Iceberg tables. This may
involve modifying your ETL processes and ensuring that data is correctly parti-
tioned. Fortunately, Apache Iceberg has many utilities to make moving things
such as Hive, Delta Lake, and Hudi tables pretty straightforward.

Adapting workflows
Review and adjust your data workflows to accommodate Iceberg. This includes
considering how data dependencies, scheduling, and data access will change with
the new data storage format. For example, if you are denormalizing multiple
datasets into an Apache Iceberg table, you’ll want to check that tables are up to
date and that any directed acyclic graphs (DAGs) make ingestion dependent on
any work on the source tables so that they finish before the ingestion job begins.

You will also need to consider whether to perform an in-place migration or a shadow
migration. In-place migration uses your existing datafiles to construct your Apache
Iceberg tables, while shadow migration involves creating a duplicate dataset in Apache
Iceberg and then transitioning off the old dataset. Table 13-1 lists the pros and cons of
each approach.

270 | Chapter 13: Migrating to Apache Iceberg

Table 13-1. Pros and cons of in-place migration and shadow migration

In-place migration Shadow migration

Pros Simplicity Safe, as it preserves the original data and allows for
Potentially lower initial storage costs testing and validation
Minimal impact on existing systems
Cons Riskier, since data is modified directly and there’s no easy Increased complexity
rollback option if issues arise Potentially higher storage costs during migration

Only works for tables using Iceberg-supported file formats

Three-Step In-Place Migration Plan

As you'll see throughout this chapter, several utilities are available for conducting
in-place migration, including the migrate and add_files procedures. Since there is
no need to write new files, the questions to consider are:

Do I want to migrate an entire table in one transaction or incrementally by partition?

« When should I change all my read and write mechanisms to use the new tables
instead of the old ones?

Small to medium-sized datasets can easily be migrated in one transaction, but it
makes more sense to migrate larger tables incrementally, adding one partition to
the Apache Iceberg table at a time until all the partitions have been added. When
doing incremental migrations, running record number and file number checks in
between each job will assist in making sure that the new Iceberg table has accurately
replicated the old table using the existing datafiles. With that said, essentially an
in-place migration plan would comprise the following steps:

1. Determine the number of files and records in the partition from the old table.

2. Migrate the partitions’ existing files into an existing Apache Iceberg table.

3. Determine the number of files and records in the same partition within the
Iceberg table to make sure it matches.

Just repeat these steps until all the partitions have been added. Then you can move all
read and write operations to the Apache Iceberg table.

Migration Considerations | 271

Four-Phase Shadow Migration Plan

When assembling a plan for a shadow migration where the table’s datafiles are
rewritten into a new Apache Iceberg table, you'll want to take a multiphase approach
to give yourself time to gradually adopt the new systems. Following is an outline of
what such a plan may look like at a high level (see Figure 13-1 for a summary):

Phase 1: Write to the old system, read from the old system
Initially, keep writing data to your existing system while setting up Iceberg
tables. This phase allows you to establish Iceberg infrastructure without affecting
ongoing operations. However, you won't benefit from Iceberg’s features yet. You
should also make sure to write all historical data from the old table to the new
Iceberg table before you begin writing new data to Iceberg in Phase 2.

Phase 2: Write to the old and new systems, read from the old system
In this phase, duplicate data is written to both the old and new systems. This
redundancy ensures data consistency but increases storage costs.

Phase 3: Write to the old and new systems, read from the new system
Once you are confident in the new Iceberg setup, switch your read operations to
use the new Iceberg tables. Ensure that data consistency is maintained between
both systems during this transition.

Phase 4: Write to the new system, read from the new system
Gradually phase out the old system and start writing data exclusively to the new
Iceberg tables. Monitor the transition carefully to catch any potential issues.

By following these best practices and adopting a structured shadow migration plan,
you can minimize disruptions, reduce risks, and ensure a successful data migration to
Apache Iceberg while maintaining data integrity and availability.

Phase1 Phase 2 Phase 3 Phase 4
Read Hive Read Hive Read Iceberg Read Iceberg
Write Hive Write Hive and Iceberg| [Write Hive and Iceberg| Write Iceberg

Figure 13-1. Four-phase shadow migration plan

Migrating Hive Tables to Apache Iceberg

Migrating from Hive tables to Apache Iceberg tables using Iceberg’s native procedures
can greatly enhance data management and provide more robust capabilities for your
analytics workflows. In this section, we'll explore the process of migrating Hive tables
to Iceberg using Spark and Dremio, enabling users to leverage the full potential of
Icebergs performance and reliability features. Iceberg’s Spark extensions offer two

272 | Chapter 13: Migrating to Apache Iceberg

primary procedures, snapshot and migrate, each serving a specific purpose in the
migration process for Hive tables.

The Snapshot Procedure

When migrating from Hive tables to Apache Iceberg, the snapshot procedure is
handy for creating a temporary Iceberg copy of a table specifically for testing pur-
poses. It’s a safe way to experiment with data without impacting the source table. The
snapshot is created using the original table’s datafiles.

To demonstrate, consider the following example code:

-- Create a snapshot of the 'db.tableA' table named 'db.tableAsnapshot'’
CALL catalog.system.snapshot('hive.db.tableA', 'db.tableAsnapshot')

-- Alternatively, specify a custom location for the snapshot
CALL catalog.system.snapshot('hive.db.tableA', 'db.tableAsnapshot', 's3://
bucket/location')

In the first example, we take a Hive table, tableA, and create an Apache Iceberg snapshot
called tableAsnapshot, so now we have a Hive table and an Apache Iceberg table using
the same datafiles. By default, this will create a folder based on the table path to house
the metadata and any datafiles created later. If we want to customize this location, we
can specify a custom location as a third argument, as shown in the preceding code’s
second example.

The Migrate Procedure

The migrate procedure facilitates the transition from a Hive table to an Apache
Iceberg table, retaining the source’s datafiles. It copies the table schema, partition-
ing, properties, and location from the source table to the new Iceberg table. This
procedure is a powerful tool for data migration. If your source table’s datafiles are
in supported formats such as Avro, Parquet, or ORC, this process is particularly
effective.

Here’s how to use the migrate procedure:

-- Migrate the 'hive.db.sample' table to an Iceberg table with additional
properties
CALL catalog.system.migrate('hive.db.sample', map('foo', 'bar'))

In this example, we are migrating a Hive table called sample into our Apache Iceberg
catalog. The new table metadata is written around the existing datafiles, but accessing
the table through the old Hive table is eliminated. It must now be accessed as an
Apache Iceberg table. If you have custom properties youd like to specify in the new
table, you can optionally pass a map as a second argument with these properties.

Migrating Hive Tables to Apache Iceberg | 273

When using the migrate procedure, you should carefully plan for schema compat-
ibility, consider whether to retain the original table, and provide any necessary
additional properties:

Compatibility
Ensure that the schema of the source table is compatible with Iceberg’s require-
ments. As noted earlier, supported formats for datafiles include Avro, Parquet,
and ORC. If the schema of the source table isn’t compatible, you may encounter
issues during migration.

Backup retention
When using the migrate procedure, it’s crucial to decide whether to retain the
original table as a backup. Retaining the backup can be beneficial for rollback
or reference purposes. However, doing so may increase storage costs. Setting
drop_backup to true ensures that the original table is not retained (meaning
a reference in the Hive Metastore to the table under a backup namespace isn’t
retained; the datafiles are still being used in the new Apache Iceberg table).

Migrating Delta Lake to Apache Iceberg

Migrating from Delta Lake to Apache Iceberg opens up new possibilities for manag-
ing your data while preserving its history and ensuring compatibility with a robust
table format. Delta Lake, known for its support for the Parquet file format and
time-travel/versioning features, provides valuable capabilities for data management.

When transitioning from Delta Lake to Iceberg, you can use the snapshotDeltaLake
Table action provided by the iceberg-delta-lake module. This action allows you
to snapshot an existing Delta Lake table into a new Iceberg table using the original
table’s datafiles. The newly created Iceberg table mirrors the schema and partitioning
of the source Delta Lake table. This migration action provides a seamless transition
path while retaining data integrity.

To migrate from Delta Lake to Iceberg, you'll need the minimum required depen-
dencies, including iceberg-delta-lake, delta-standalone-0.6.0, and delta-storage-2.2.0.
The migration process supports Delta Lake tables with specific protocol versions,
ensuring compatibility during the transition.

The following code example demonstrates the snapshotDeltalLakeTable action. It
includes specifying the source Delta Lake table’s location, the destination table’s loca-
tion, the new Iceberg table’s identifier, the catalog to use, the Hadoop configuration
for access, and additional table properties:

274 | Chapter 13: Migrating to Apache Iceberg

import ;

import H

import ;

import ;

// location of the original delta lake table
String sourceDeltalakeTableLocation = "s3://my-bucket/delta-table";

// where the new Apache Iceberg tables should be located
String destTableLocation = "s3://my-bucket/iceberg-table";

// Name of the table
TableIdentifier destTableldentifier = TableIdentifier.of("my_db", "my_table");

// iceberg catalog to add the table to
Catalog icebergCatalog = ...;

// file system configurations for Delta Lake table
Configuration hadoopConf = ...;

DeltalLakeToIcebergMigrationActionsProvider.defaultActions()
.snapshotDeltalLakeTable(sourceDeltalakeTablelLocation)
.as(destTableIdentifier)
.1cebergCatalog(icebergCatalog)
.tableLocation(destTableLocation)
.deltalLakeConfiguration(hadoopConf)
.tableProperty("my_property", "my_value")

.execute();

The snapshotDeltalakeTable action simplifies the migration process, ensuring that
your data’s history is preserved while providing the benefits of Iceberg’s exclusive
features.

Migrating Apache Hudi to Apache Iceberg

Apache Hudi is a popular data lake storage format known for supporting ACID
transactions and efficient data management capabilities. However, suppose you are
considering migrating from Hudi to Apache Iceberg. In that case, you'll be pleased
to know that as of this writing, a procedure similar to the Delta Lake snapshot
procedure is being developed for Hudi tables (Pull Request #6642). This procedure
allows you to seamlessly transition your data using the datafiles of the existing table.

The migration procedure for Hudi tables to Iceberg tables involves using the HudiTo
IcebergMigrationActionsProvider class provided by the iceberg-hudi module.
The key action for this migration is snapshotHudiTable, which enables you to snap-
shot an existing Hudi table into a new Iceberg table. This migration action offers a
reliable path for transitioning from Hudi to Iceberg.

Migrating Apache Hudi to Apache Iceberg | 275

Here is an example of how to use the snapshotHudiTable action for migrating a Hudi
table to an Iceberg table:

import H

import ;

import ;

import ;

// location of existing hudi table
String hudiTablePath = "hdfs://my-hudl-tablet";

// name of new iceberg table
String newTableIdentifier = "my _db.my_table";

// iceberg catalog new table will be registered with
Catalog icebergCatalog = ...;

// File System configs for Hudi Table
Configuration hadoopConf = ...;

HudiToIcebergMigrationActionsProvider.defaultProvider()
.snapshot AudiTable(hudiTablePath)
.as(TableIdentifier.parse(newTableIdentifier))
.hoodieConfiguration(hadoopConf)
.1cebergCatalog(icebergCatalog)

.execute();

In this example, we specify the Hudi table’s path, the new Iceberg table’s identifier, the
Hadoop configuration for access, and the Iceberg catalog to use.

Migrating Individual Files to Apache Iceberg

In some scenarios, you may have datasets stored as individual files, such as pure
Parquet datasets (meaning a Hive Metastore is not tracking the partition directories
containing these files), and you want to migrate these files into an Apache Iceberg
table for improved management, query performance, and schema evolution capabil-
ities. Apache Iceberg provides the add_files procedure to facilitate this migration
process, allowing you to import files into an existing Iceberg table without creating
a new table. Additionally, you can use this procedure to migrate data from Delta
Lake and Apache Hudi tables, without preserving history, by expiring all previous
snapshots.

Using the add_files Procedure

The add_files procedure is a versatile method for adding external datafiles to an
Apache Iceberg table. It does not analyze the schema of the files, so it’s important to
ensure that the files match the schema and partitioning of the target Iceberg table to

276 | Chapter 13: Migrating to Apache Iceberg

prevent inconsistencies when reading the Apache Iceberg table. Here is how you can
use the add_f1iles procedure:

CALL catalog.system.add_files(
table => 'db.my_table',
source_table => 's3://my-parquet-tables/tables’,
partition_filter => map('partition_col', 'partition_value'),
check_duplicate_files => true
)
In this example, we tell the engine that all datafiles in the table in a particular folder
should be added to my_table. We can use the partition_filter argument to only
add files from a particular partition for incremental processing and enable checking
for duplicate files to avoid duplicative additions.

This procedure will create metadata for the new files and treat them as part of
the Iceberg table’s file set (it is assumed that these files match the Iceberg tables
partitioning and schema). It's worth noting that subsequent Iceberg operations can
physically delete files added using this method.

Migrating from Delta Lake or Apache Hudi Without Preserving History

To migrate data from Delta Lake or Apache Hudi tables into an Apache Iceberg table
without preserving history, follow these steps:

1. Expire all previous snapshots in the Delta Lake or Hudi table to retain only the
current snapshot’s files.

2. Use the add_f1iles procedure to import the files from the current snapshot into
the target Iceberg table, as shown in the previous example.

This approach allows you to transition to Apache Iceberg while keeping only the
latest version of your data, which can be advantageous when maintaining a simplified
version of your data lake.

By leveraging the add_files procedure, Apache Iceberg provides a flexible and
efficient way to migrate individual files or data from other storage formats into an
Iceberg table.

Migrating from Anywhere by Rewriting Data

Flexibility often stands as a paramount goal. When it comes to migrating data from
diverse sources to an Apache Iceberg table, there are two approaches. You can migrate
data into a new table using a CREATE TABLE..AS SELECT (CTAS) statement with any
engine, including Spark, Dremio, Trino, and Presto. You can also insert data into
existing Iceberg tables from other nontable sources, such as JSON/CSV, with the COPY

Migrating from Anywhere by Rewriting Data | 277

INTO command (Dremio/Snowflake) and from any other table using an INSERT INTO
SELECT command.

Migrating Data to a New Iceberg Table

Migrating data into a new Apache Iceberg table using a CTAS statement is a powerful
and versatile method for the following reasons:

Schema evolution
CTAS allows you to adapt the schema during migration. You can map columns
from the source to the target table, rename columns, change data types, and
apply expressions for calculated columns.

Partitioning control
If the source data is not partitioned in the desired way, you can use CTAS to
create partitions based on specific columns, dates, or other criteria. This enables
better data organization and query performance.

Data transformation
You can apply data transformations within the CTAS query, making it possible to
clean, aggregate, or preprocess data during migration.

This approach allows for fine-grained control over the migration process and enables
schema, partitioning, and data alterations to be made during data transfer. Following
is a breakdown of how to execute this migration.

First, connect your original data source and the target Iceberg catalog. This typically
involves configuring your query engine (e.g., Dremios SQL Query Engine, Apache
Spark, Trino, Presto) to access the source data and the destination Iceberg catalog.

Once the connections are established, you can migrate the data using a CTAS state-
ment. The CTAS statement creates a new Iceberg table and populates it with data
from the source. Here’s an example using Apache Spark SQL:

CREATE TABLE catalog.db.tableA
USING iceberg
PARTITIONED BY (month(ts_field))
AS
SELECT *,
CAST(old_field AS <data_type>) AS updated_field
FROM my_source_table;

In this example, we are creating a new Apache Iceberg table in a catalog called
tableA. The table will replicate the results of the SELECT query, which converts the
data type of an old field we've meant to update. We also specify a partitioning scheme

using the month transform to leverage Iceberg’s partitioning features as the new data
is written. New datafiles are then written to create this table.

278 | Chapter 13: Migrating to Apache Iceberg

When migrating large datasets to a new Iceberg table, there are a few best practices to
consider regarding scalability and performance:

Migrate incrementally
Consider an incremental approach instead of migrating the entire dataset in one
go. Start with a CTAS statement that covers a single partition or a subset of
data. Afterward, use INSERT INTO SELECT statements to gradually add data for
other partitions. This reduces the risk of overloading resources and improves
manageability. Make sure to run record number checks by partition as you do
this to check for completeness of the data.

Optimize for parallelism
You can optimize performance by leveraging parallel processing depending on
your query engine. Ensure that your query engine’s parallelism settings are con-
figured appropriately for the migration task.

Conduct monitoring and logging
Keep a close eye on the migration process. Monitor progress, resource utilization,
and any potential errors or issues. Logging the migration activities is essential for
troubleshooting and auditing purposes.

In summary, using a CTAS statement with query engines provides you with fine-
grained control over the migration process into an Apache Iceberg table. This method
accommodates schema changes, partitioning strategies, and data transformations,
making it suitable for a wide range of migration scenarios. When dealing with large
datasets, consider incremental migration and performance optimization for a smooth
and efficient data transfer process while preserving table history.

Migrating Data into an Existing lceberg Table
Migrating data into an existing Apache Iceberg table requires different paths than
CTAS, which creates a new table. We'll discuss two common paths here:

o Inserting data from a nontable source (files) using a COPY INTO statement

o Inserting data from another table using an INSERT INTO SELECT statement

The COPY INTO command

The COPY INTO command takes data from a source that is not a cataloged table by the
engine and inserts it into a target table (new datafiles are written). There are many
benefits to using COPY INTO:

Migrating from Anywhere by Rewriting Data | 279

Schema coercion
The COPY INTO command automatically coerces the data in the files coming
from schema-less sources such as CSV to match the schema of the target Iceberg
table. This means that data types, column names, and structures are adjusted as
needed, reducing the risk of data type mismatches.

Efficient data ingestion
The COPY INTO command is optimized for efficient data ingestion. It saves you
time in having to stage data as another table.

Incremental data ingestion
You can use the COPY INTO command for incremental data ingestion. If you
have new CSV, JSON, or Parquet files to add to the Iceberg table, simply run the
command again against the new files.

This can be helpful as it saves the step of needing to stage the data as a table when you
only intend to insert the data into another table. Following is an example:

-- Example of COPY INTO using Dremio Syntax
COPY INTO catalog.db.my_iceberg_table

FROM '@my_dremio_source/folder'

FILE_FORMAT 'csv';

In this example, the intent is to add the data from a folder’s CSV files into a table
named my_1iceberg_table. Dremio will read all the data in the CSV files, apply the

schema from the destination table, and write new datafiles that will get added to that
table.

There are several considerations for a successful migration using COPY INTO:

Data quality
Ensure that the data in your CSV, JSON, or Parquet files is clean and adheres to
the schema of the target Iceberg table. Inconsistent or malformed data may lead
to ingestion errors.

File organization
Organize your datafiles in a way that makes sense for your use case. For example,
if youre partitioning your Iceberg table by date and ingesting incrementally,
organize your files into date-specific folders, making it easy to specify which data
is to be ingested at each incremental step.

File format options
Depending on your data’s characteristics, you can specify additional options
within the FILE_FORMAT clause, such as date and time formats, delimiter
characters, and the handling of NULL values.

280 | Chapter 13: Migrating to Apache Iceberg

The Dremio version of the COPY INTO statement can perform incremental data
ingestion. This means you can add new data to your existing Iceberg table without
reloading the entire dataset.

First you must prepare the new data by organizing it into files, placing the files in
the source location, and prefixing their names with the target ingestion date. Next,
rerun the COPY INTO command and filter the files using regular expressions for only
the files that are prefixed with the particular date, specifying the same target Iceberg
table. Here is an example:

-- DremioSQL Syntax

-- Use the COPY INTO command with a regex pattern

COPY INTO my_table

FROM '@my_storage_location'

REGEX '~2023-10-11_.*\.csv'

FILE_FORMAT 'csv';
For a Snowflake COPY INTO, you can just have different folders representing different
ingestion points:

-- SnowflakeDB Syntax

-- Use the COPY INTO command to ingest files

COPY INTO '@my_external_stage'

FROM '@s3://my-s3-bucket/path/tablea-2023-10-11"'

FILE_FORMAT = (TYPE = 'CSV' FIELD_DELIMITER = ',' SKIP_HEADER = 1)

CREDENTIALS = (AWS_KEY_ID = '<your_aws_key_id>' AWS_SECRET_KEY =

'<your_aws_secret_key>"')

VALIDATION_MODE = RETURN_ROWS;
The COPY INTO command offers a straightforward and efficient method for migrating
data into an existing Apache Iceberg table. This approach ensures schema coercion
and efficient data ingestion. Also, it supports incremental updates, making it a valua-
ble choice for maintaining table history while keeping your Iceberg table current with
new data.

The INSERT INTO SELECT command

Using any query engine, you can insert data from any table into an Apache Iceberg
table using INSERT INTO SELECT. This is particularly useful with engines that can
federate data from several sources, such as Dremio, Trino, and Presto. Simply insert
data from another table:

INSERT INTO tableB

SELECT * FROM tableA;
To update the data, you can use MERGE INTO statements, which can be easier if the
source table has updated_at and created_at fields:

-- DremioSQL Syntax
MERGE INTO tableB AS target

Migrating from Anywhere by Rewriting Data | 281

USING (
SELECT *
FROM tableA
WHERE created_at >= DATE_DIFF(CURRENT_DATE(), CAST(30 AS INTERVAL DAY))
OR updated_at >= DATE_DIFF(CURRENT_DATE(), CAST(30 AS INTERVAL DAY))
) AS source
ON target.id = source.id
WHEN MATCHED THEN
UPDATE SET
target.columnl = source.columnil,
target.column2 = source.column2,
target.created_at = source.created_at,
target.updated_at = source.updated_at
WHEN NOT MATCHED THEN
INSERT *

In the preceding example, we are merging data that was created or updated in the
last 30 days. This makes for a more performant job because we aren’t merging every
record in both tables, just the relevant ones. When working with tables, using the
INSERT INTO command allows you to easily take data from one table and insert it
into your Apache Iceberg tables. Furthermore, MERGE INTO can make it easy to run
comprehensive upserts in platforms supporting that capability.

Conclusion

This chapter provided a comprehensive overview of data migration strategies and
best practices when migrating to Apache Iceberg. We began by laying the ground-
work, highlighting the critical considerations and structured approaches necessary
for a successful migration. Understanding the challenges and pitfalls is paramount to
achieving a seamless transition.

We then delved into specific migration scenarios, starting with Hive tables and
showing how to use the migrate and snapshot procedures. We explored migrating
from Delta Lake and Apache Hudji, and for those working with no table format, we
discussed migrating individual files into Apache Iceberg. This flexibility allows for
efficient data movement without compromising the power of Iceberg’s management
and performance capabilities.

Furthermore, we explored how to rewrite data from various sources, including the
use of the CTAS statement to populate new Apache Iceberg tables with data or to
inject data into existing Iceberg tables using the COPY INTO or INSERT INTO SELECT
statement, regardless of the original format. This adaptability allows you to accom-
modate data from diverse origins seamlessly.

In Chapter 14, we'll walk through the process of using Apache Iceberg in several use
cases, including business intelligence dashboards and AI/ML.

282 | Chapter 13: Migrating to Apache Iceberg

CHAPTER 14

Real-World Use Cases of Apache Iceberg

In this chapter, we will dive into some of the real-world applications of Apache
Iceberg and provide you with hands-on experience in running different analytical use
cases supported by a lakehouse architecture. These use cases will include ensuring
data quality in data lakes, building business intelligence (BI) reports, and implement-
ing critical processes such as CDC. Additional use case for building a real-time
analytical architecture, running machine learning (ML) workloads, and slowly chang-
ing dimensions (SCDs) are available at this supplemental repository. This chapter is
a practical introductory guide, showcasing how to tackle essential real-world applica-
tions using Iceberg and highlighting its adaptability and importance as a core element
in any data architecture.

Ensuring High-Quality Data with Write-Audit-Publish
in Apache Iceberg

Maintaining the highest level of data quality is crucial for deriving meaningful
insights. If data quality is compromised at any point in a data engineering workflow,
it can adversely affect subsequent analyses such as BI and predictive analytics. For
example, consider an extract, transform, and load (ETL) process: it takes data from
an operational system and transfers it to an analytical system for use in BI reports
or ad hoc analyses. If the original data has duplicates or inconsistencies or if such
issues are introduced during the ETL process and are not addressed before reaching
the production analytics environment, the result can be flawed insights that can lead
to incorrect decisions. This highlights the critical importance of data quality in data
engineering workflows. It’s essential, not just in theory but as a practical necessity, to
ensure that data is accurate, consistent, and reliable.

283

https://oreil.ly/apache-ice_more-content

This is where the Write- Audit-Publish (WAP) pattern provides a systematic approach
to ensure that data is of good quality. Let’s take a look at the process in more detail:

1. Write: Data is first extracted from sources and written to a nonproduction
location, isolating production data from potential inconsistencies.

2. Audit: Once staged, the data undergoes a thorough validation process. This could
involve inspecting null or duplicate values, validating data types, and checking
data integrity.

3. Publish: After validation, the data is atomically pushed to production tables,
ensuring that consumers see the entire updated dataset or none of it.

Let’s see how we can implement this process with Apache Iceberg. While Iceberg
offers the APIs and semantics to implement WAP, the onus of actual pattern imple-
mentation falls on the compute engine. Apache Spark supports the implementation of
WAP, and we will be using it for our hands-on exercise.

WAP Using Iceberg’s Branching Feature

Although there is more than one way to implement WAP in Iceberg, we will focus
on an approach using Iceberg’s table-level branching capabilities. Branching in Iceberg
works similarly to Git branches where you can create local branches from the pro-
duction table (main branch) to carry out isolated data work on the table. The core
Iceberg component behind a branch is the snapshot, which describes the state of
an Iceberg table at a certain point in time. Branches are named references to these
snapshots. We discuss branching in detail in Chapter 10.

Let’s imagine that product sales data from an ecommerce company is regularly
extracted from operational systems, such as relational database management systems
(RDBMSs) and customer relationship management (CRM) systems, and is then
loaded into the company’s Amazon Simple Storage Service (Amazon S3) data lake.
The data engineering team is responsible for creating and maintaining Iceberg tables
in the data lake, which serves as the base dataset to cater to different production
applications such as BI reports and predictive models. How can they ensure the
quality of the data before pushing it into the production environment?

The first step to implementing WAP in Iceberg is to create a new branch from the
production version of the Iceberg table in order to ensure that it has no impact on
the main branch. Once the branch is created, they can ingest the new records onto
the branch. After conducting data validation checks and ensuring that the data meets
the required quality standards, they can publish the new data to the main branch, and
if the checks fail, they can drop the branch and reattempt the job without affecting
production. This process is illustrated in Figure 14-1.

284 | Chapter 14: Real-World Use Cases of Apache Iceberg

https://git-scm.com/docs/git-branch

vl

Visible to
downstream apps
Prod environment
Publish
Data quality
G00D?
Cherry-pick
o Create branch snapshot 123
o ! BranchETL : .
+ (snapshot_123) i Data quality

(tracked using A 4

Spark.WAP.branch) | Drop branch |

Visible only to
audit user/process

Figure 14-1. The WAP process at the table level
Let’s get hands-on and walk through this example using WAP.

Create a branch

First, let’s create a new branch named ETL_branch from the existing Iceberg table.
This branch will act as the staging area for the new data:

Create a Branch on the Table called 'etl_branch’
spark.sql("ALTER TABLE catalog.db.table CREATE BRANCH etl_branch").show()

Let’s query this branch to see this dataset’s total number of records:

Get a count of all records in the table
spark.sql("SELECT COUNT(*) as total_records FROM catalog.db.table").show()

This query will print out the total number of records in the table; this is a good
number to have ready for validating our ingestion job after it has run by ensuring

Ensuring High-Quality Data with Write-Audit-Publish in Apache Iceberg | 285

that the correct number of records has been added. Let’s also confirm the branch we
created exists using the following query, which gives us a list of all references in the
table, including branches and tags:

List all Table References
spark.sql("SELECT * FROM catalog.db.table.refs").show()

We should see our main branch and the et1_branch we created earlier.

Write the data

A couple of preparatory steps are required before we begin using the WAP method
for ingesting new data. First we must adjust the Iceberg table property by turning
on write.wap.enabled=true. This step prepares our Iceberg table to follow the WAP
pattern. After that, to make sure any actions, whether reading or writing, target this
specific branch directly, we use the spark.wap.branch setting to assign the branch
identifier et1_branch to the Spark session configuration:

Enabling the Apache Iceberg WAP feature

spark.sql("ALTER TABLE catalog.db.table SET TBLPROPERTIES ('write.wap.ena
bled'="true')")

Setting the table for WAP

spark.conf.set('spark.wap.branch', 'etl_branch')
Now we are ready to run the ETL job to ingest new records to this specific branch of
the table:

Insert New Records Into the Table
spark.sql("INSERT INTO catalog.db.table SELECT * FROM new_data")

If you query the table’s record count now, you'll see the table has additional records:

The Number of Records on the 'etl_branch’

spark.sql("SELECT COUNT(*) as total_records FROM catalog.db.table VERSION AS OF

'etl_branch'").show()
Remember that this branch acts as a standalone variant of the production data. Any
action taken on this branch affects only this dataset, not the main one. You can
validate your production table by querying the record count on the main branch. You
should see that this query returns the same count we had originally, telling us the
main branch is unchanged:

Count of Records on the Main Branch

spark.sql("SELECT COUNT(*) as total_records FROM catalog.db.table VERSION AS OF
'main'").show()

Audit the data

After writing the new data into the isolated local branch, et1_branch, it is essential
to ensure that this new dataset stands up to the organization’s quality standards. The

286 | Chapter 14: Real-World Use Cases of Apache Iceberg

audit phase acts as a checkpoint where we subject our data to rigorous evaluation,
ensuring its fitness for purpose.

The audit process offers the flexibility to write native code or incorporate third-party
tools tailored to validate data quality checks. We will perform a few basic data quality
checks for this exercise.

NULL values. First let’s use PySpark to see if there are any null values in the table:

df = dataframe with our "catalog.db.table" table

Check for nulls in each column

null_counts = df.select([count(when(col(c).isNull(), c)).alias(c) for c in
df.columns])

Show the result
null_counts.show()

The resulting DataFrame will list the number of nulls in each column.

Duplicate records. As part of the next data quality check, let’s use PySpark to see if
there are any duplicate records in our table and print them:

df = dataframe with our "catalog.db.table" table
Group by all columns and count
duplicates = df.groupBy(df.columns).count()

Filter out groups with count > 1, which indicates duplicates
duplicates = duplicates.filter(col("count") > 1)

Optionally, drop the count column if not needed
duplicates = duplicates.drop("count")

Show the result (duplicates)
duplicates.show()

The output shows which records have duplicates (all columns have the same values).

Date consistency. The final data quality validation we want to perform on this new
dataset is date consistency. When dealing with time-series data or records with
timestamped entries, it is critical to ensure that every date in the dataset is valid and
falls within a predefined, acceptable range. For example, let’s assume that the data
we ingested represents the period of January 2024. The number of records whose
date_column values are in this period should equal the number of records added.

Let’s quickly write some code to do this:

df = dataframe with our "catalog.db.table" table

Define your date range

start_date = datetime(2024, 1, 1) # for example, Jan 1, 2024
end_date = datetime(2024, 1, 31) # for example, Jan 31, 2024

Ensuring High-Quality Data with Write-Audit-Publish in Apache Iceberg | 287

Convert the date column to date type if it's not already
df = df.withColumn("date_column", col("date_column").cast("date"))

Filter the DataFrame to find records within the date range
within_range = df.filter((col("date_column") >= start_date) & (col("date_col
umn") <= end_date))

Count the records that fall within the desired date range

count_within_range = within_range.count()
We compare this count to the difference between the count of the records on the main
branch and the count on etl_branch. If they don’t match, we can inspect whether any
records have incorrect dates or null dates causing the inconsistency.

We have gone through three examples of data quality checks we can run on an
isolated branch. During these checks, the yet-to-be-validated data was not being
scanned by incoming queries that would query the main branch, which will only
have validated data. The ability to perform these quality checks flexibly in an isolated
branch without impacting anything in production is a critical capability in Apache
Iceberg.

By using this approach, we end up with a couple of benefits:

Enhanced data quality
Production environments are not exposed to unverified data, preventing incor-
rect results and decisions. This eliminates the rush to correct data errors,
reducing the risk of additional mistakes during the fixing process.

Efficient data handling
Compared to the traditional way of using a staging table for quality checks, the
need for data copies is eliminated, saving resources and ensuring efficiency. This
enables the easy identification of issues, such as duplicate data, that are often
missed when just checking new data.

Applying fixes. At this stage, you can take a couple of actions, such as communicating
about the anomalies with the required stakeholders, reviewing the ETL job, determin-
ing the origin of the anomalies, and applying some quick fixes. As a basic remedia-
tion step, let’s create two DataFrames—one with records needing remediation, which
we can save to another table or write to a file to give to stakeholders, and another
comprising validated records that we can overwrite the table with so that it only has
validated records:

1. Identifying Null Records
Check for nulls in each column and create a filter condition
is_null_condition = [col(c).isNull() for c in df.columns]
combined_null_condition = is_null_condition[0]
for condition in is_null_condition[1:]:

combined_null_condition = combined_null_condition | condition

288 | Chapter 14: Real-World Use Cases of Apache Iceberg

2. Identifying Duplicated Records
Group by all columns, count occurrences, and filter for counts greater than 1
duplicates_condition = df.groupBy(df.columns) \

.count() \

filter(col("count") > 1) \

.drop("count") \

.distinct()

3. Creating DataFrame for Records Needing Remediation

Union the null and duplicated conditions to find all records needing remedia
tion

records_needing_remediation = df.filter(combined_null_condi
tion).union(df.join(duplicates_condition, df.columns, "inner")).distinct()

4. Creating DataFrame for Valid Records
Use exceptAll to find records that are neither null nor duplicated
valid_records = df.exceptAll(records_needing_remediation)

Show the records needing remediation
records_needing_remediation.show()

Show the valid records
valid_records.show()

Overwrite the table with only the validated records

valid_records.write.format("iceberg").mode("overwrite").save("catalog.db.table")
Now our branch has new validated records, and we've shipped off the invalid records
to our stakeholders, who can fix them for later backfilling.

Publish the changes

The final operation in the WAP pattern is to publish the changes and make the data
available to the production environment so that downstream applications can use it.
The publish operation is made possible by the cherry-pick procedure in Iceberg.

In Spark, the cherrypick_snapshot() procedure produces a new snapshot based on
a previous one, all the while preserving the original without any changes or deletions.
For our use case, we can select a specific snapshot, the branch (ETL_branch), to form
a new snapshot. What sets cherry-picking apart is that it is a metadata-only opera-
tion. This implies that the actual datafiles remain untouched and only the metadata
references are altered. As a result, we're essentially making the new data available in
the production table without the need to relocate any datafiles. One limitation to note
is that cherry-picking caters to a single commit.

To run this procedure, we will need to provide the snapshot ID as an argument to
the method. Let’s find out the snapshot ID associated with etl_branch by querying a

Ensuring High-Quality Data with Write-Audit-Publish in Apache Iceberg | 289

https://oreil.ly/416_7

metadata table called refs, meaning references (we discussed all the metadata tables
facilitated by Iceberg in Chapter 10):

#Query The List of References for the Table

spark.sql("SELECT * FROM catalog.db.table.refs")
This will return our list of references (branches and tags), and we can see the current
snapshot ID for each branch, which is the information we need. Now let’s execute the
cherry_pick() procedure:

#Cherry-picking the snapshot from 'etl_branch' over to 'main’
spark.sql("CALL catalog.system.cherrypick_snapshot('db.table',
2668401536062194692)") . show()

Once the operation runs successfully, our main branch’s current snapshot will be made
the same snapshot at the current etl_branch snapshot. This means we have made the
newly inserted records in et1_branch available to the main branch for production usage.

If we now query the record count on main and etl_branch, we should see they are
identical:

Record count on the 'main' branch
spark.sql("SELECT count(*) FROM catalog.db.table VERSION AS OF 'main'").show();

Record count on the 'etl_branch' branch
spark.sql("SELECT count(*) FROM catalog.db.table VERSION AS OF
'etl_branch'").show();

To conclude this particular WAP session associated with the branch, we will remove
the specific Spark configuration property, spark.wap.branch. This ensures that all
the subsequent reads and writes do not explicitly happen from this branch but from
the main branch of the table:

#Turn off the WAP feature

spark.conf.unset('spark.wap.branch")
In this use case, we reviewed how to leverage the WAP data quality pattern in Apache
Iceberg to address the challenges of dealing with data quality at scale. With WAP, before
committing data to the production environment, there’s a structured mechanism to
write, assess for quality concerns, and finalize or discard the data. This method preserves
the reliability of the data, ensuring that what drives business decisions is accurate, con-
sistent, and free from anomalies. If you need to isolate changes across multiple tables,
catalog-level branches can be created for a similar pattern using the Nessie catalog
covered in Chapter 10.

Running Bl Workloads on the Data Lake

BI dashboards are the lifeblood of many companies, but making BI dashboards
performant can often be easier said than done. As you start creating dashboards on

290 | Chapter 14: Real-World Use Cases of Apache Iceberg

larger and larger datasets, performance begins to deteriorate and the need for engi-
neering kicks in. This would normally come in BI extracts and cubes, independent
data structures created from precomputer aggregations over several dimensions and
measures. There are several problems with this solution:

The BI dashboard has to be manually re-created periodically to reflect fresh data.
BI dashboards can get very large, leading to OOM issues.
Historical copies add up, causing storage costs or painful maintenance work.

The user needs to know that their dashboard must work off the BI extract/online
analytical processing (OLAP) cube and not the original table.

A BI dashboard impairs the goal of self-service, as users will need to submit work
tickets to have these kinds of structures created to accelerate their dashboards.

Apache Icebergs use, particularly in the Dremio SQL query engine, eliminates a
lot of this work through its aggregate reflections feature. Aggregate reflections are
precomputed aggregations stored as an Apache Iceberg table on the user’s data lake,
providing several benefits:

Refreshes of the data structure are automated by Dremio.
Dremio’s query engine knows how to handle reflections to avoid OOM errors.
Dremio automatically cleans up historical copies to avoid storage creep.

Dashboards can be built on the original table, and Dremio will swap the aggre-
gate reflection when your BI tools send aggregate queries.

They can be turned on at the flip of a switch or an SQL query, enabling self-
service acceleration.

If the underlying table is an Apache Iceberg table, the aggregate reflection is
updated incrementally, allowing for data updates to proliferate in near-real time.

As you can see, Apache Iceberg is the core that powers the acceleration of BI dash-
boards throughout this story. The workflow would typically go as follows:

1.
2.

Raw data is landed as Apache Iceberg tables in the data lake.

Virtual data marts and data products are created by creating layers of logical
views on these tables.

. Reflections are enabled on a view that a dashboard will be made from. An Apache

Iceberg representation of the aggregates will be created behind the scenes.

. A dashboard will be created on the source, which will feel performant as aggre-

gate queries are executed against the reflection instead of the raw sources.

Let’s look at each step in turn.

Running Bl Workloads on the Data Lake | 291

Land the Raw Data into the Data Lake

The first step is to land your data into the data lake as Apache Iceberg tables, which
can be done using many of the tools discussed in this book. Here are a few of the
many possible approaches to getting this done:

o Using tools such as Apache Spark and Apache Flink to ingest batch or stream
data into Apache Iceberg tables in the data lake

» Using CREATE TABLE..AS SELECT (CTAS) statements with any query engine to
take a data source such as a database and re-create it as an Apache Iceberg table
on your data lake

o Using the COPY INTO statement on Dremio to copy data from different datafiles
into an existing Apache Iceberg table

 Using data integration tools such as Upsolver, Airbyte, or Fivetran to ingest data
into Apache Iceberg tables using their no-code interfaces

Once your data is in the form of Apache Iceberg tables, you just need to connect your
data lake storage (Amazon S3, Azure Data Lake Storage [ADLS], Minio) or Apache
Iceberg catalog (Hive, Nessie, Amazon Web Services [AWS] Glue) to Dremio to be
able to have access to your Apache Iceberg tables, as you can see in Figure 14-2.

arctic.Logistics §¢ main >

Name 1

i drop_off_locations

ig shipments

i (ruck_vendors

o warehouses

Figure 14-2. Apache Iceberg tables in the Dremio Ul

Curate Virtual Data Marts/Data Products

In data warehouses, you’ll often apply your cleanup, validation, and business logic
through layers of copies organized into datasets for different business units; these
subwarehouses are known as data marts. Dremio enables the creation of virtual data
marts on the data lakehouse, so instead of creating more physical tables from our raw

292 | Chapter 14: Real-World Use Cases of Apache Iceberg

Apache Iceberg tables, we can create layers of logical views that encapsulate cleanup,
validation, and business logic and organize these into folders for each business unit.
This effectively organizes your data into data marts or data products, as you can see

in Figure 14-3.

Logistics
h 4 v
drop_off_locations shipments truck_vendors warehouses
1] N — — 117
denormalized_shipments
» —
v
- ~
oh_shipments validated_shipments ny_shipments
- >

Figure 14-3. An example of the structure of a virtual data mart or data product
in Dremio

Create a Reflection to Accelerate Our Dashboard

For many datasets, this will be performant enough without further action for a
dashboard, but if you are working with a really large dataset to fuel a dashboard, you
may want to create an aggregate reflection to ensure performance. For example, if
you were creating a dashboard of Ohio shipments based on the oh_shipments view
shown in Figure 14-3, you could enable an aggregate reflection on that table with a
few clicks on the Dremio UI or through a simple SQL query:

ALTER TABLE arctic.logistics.oh_shipments
CREATE AGGREGATE REFLECTION oh_shipments_agg
USING
DIMENSIONS (shipper_id, destination_city, shipping_method)
MEASURES (shipment_id (COUNT), total_cost (SUM), delivery_time (AVG))
LOCALSORT BY (shipper_1id, destination_city);

Running Bl Workloads on the Data Lake | 293

This will create a reflection that is optimized for the particular dimensions and measures
needed for the dashboard we are creating and the Apache Iceberg table containing pre-
computed aggregates called oh_shipments_agg. Although our analysts need to be aware
of the existence of this reflection, Dremio will swap out oh_shipments_agg anytime it sees
aggregate queries coming in for oh_shipments across the same dimensions and measures.
Also, since our source tables are Apache Iceberg tables, reflections can be incrementally
applied, allowing the reflection to maintain near-real-time freshness.

Connect Our View to Our Bl Tool

Many BI tools have Dremio integrations, but Tableau and Power BI in particular have
integrations built into the Dremio UI This means all you have to do is open your
view (oh_shipments) in the Dremio UI and click the Tableau and Power BI buttons
to immediately establish a live connection to Dremio for crafting your BI dashboard.
You can see these buttons in the Dremio Ul in Figure 14-4.

E‘, oh_shipments [—
v Overview

arctic.Logistics."oh_shipments"
Ref:% ¢ main

No Label /@@

Last updated 12/13/2023, 10:32:08

Launch BI tool i 1

Figure 14-4. BI tool integration in Dremio

Benefits of Running Bl Workloads on the Data Lake

By combining the power of Apache Iceberg and Dremio, we've created performant BI
dashboards directly from the data lakehouse. This saved us the storage and compute
costs of having to move that data into a data warehouse and create and maintain BI
extracts and cubes while maintaining a simple and self-service model for our end
users. The Apache Iceberg ecosystem is filled with tools that make different use cases
such as this easy and scalable while working with only a single copy of your data in
one place, the data lakehouse.

294 | Chapter 14: Real-World Use Cases of Apache Iceberg

Implementing Change Data Capture with Apache Iceberg

CDC is an integral process in the analytics landscape. At its core, CDC is about
capturing and tracking changes in the source data. This enables downstream sys-
tems to synchronize with the most recent data version efficiently and progressively.
In traditional batch processing, databases and data warehouses would often be
updated in bulk, potentially missing out on real-time insights and often leading
to resource-intensive operations. This approach commonly resulted in outdated
views of data, delays in decision making, and inefficient use of storage and computa-
tional resources. By focusing on incremental changes—whether they involve inserts,
updates, or deletions—CDC ensures that data systems remain synchronized without
needing to repeatedly process extensive static data. Figure 14-5 depicts a visual
representation of what capturing CDC data looks like at a high level.

Snapshot 1 Snapshot 2
)]
Changelog
ISR File2 File3:
Deleted -,.ﬁld_d.egl_:; Ad_d.egl_:

Figure 14-5. An illustration of capturing changes between snapshots

Imagine GreenMart, a retail company with fluctuating stock levels and changing pri-
ces in a dynamic retail environment. The company aims to gain real-time stock avail-
ability insights to meet customer demands and share these insights with stakeholders
such as store managers through its BI reporting system. However, the challenge
is maintaining updated BI reports without overloading the system by recalculating
aggregates for each change, given the high transaction volume. To address these
issues and manage its extensive data, GreenMart seeks a flexible data architecture
supporting scalable storage and compute. The company requires schema evolution,
ACID-based transactions (INSERT, UPDATE, MERGE INTO, DELETE), rollback capabili-
ties, and CDC. A possible solution for its needs could involve using a cloud data lake
storage system such as Amazon S3 in conjunction with Apache Iceberg as the table
format.

One approach to address this problem involves creating two Iceberg tables, inven
tory and inventory_summary, within an S3 data lake. The inventory table will house
data from operational systems such as databases and CRMs for analytical purposes,
while the inventory_summary table will store aggregated and transformed data for BI
reporting. All updates from the transactional systems will be stored in the data lake

Implementing Change Data Capture with Apache Iceberg | 295

and subsequently applied to the inventory table through an ETL process utilizing
Spark. Icebergs CDC process will track any modifications to the inventory table,
storing them in a change log view named inventory_changes. Using this change log
view, only the altered data in the downstream aggregation table inventory_summary
will be updated, eliminating the need to recalculate aggregates for the entire dataset
with each change. This approach ensures that the BI reports consistently access the
most up-to-date data.

Figure 14-6 demonstrates what this could look like visually. Next, let’s see this in action.

insert
update
delete

Inventory

Inventory changes
Change log view

Track changes
(chC)

Source
system

Iceberg

{update only changes)

Inventory_
summary

Product ID

0 20 40 60 80 100 120 10 160
Average total stock

\ J

Figure 14-6. Using CDC data to update summary metrics for a BI dashboard

Create Apache Iceberg Tables

Let’s create the first Iceberg table, inventory, and ingest some mock data:

spark.sql('''CREATE TABLE glue.test.inventory(
product_1id int,
product_name string,
stock_level int,
price int,
last_updated date) USING iceberg''')

296 | Chapter 14: Real-World Use Cases of Apache Iceberg

spark.sql('''INSERT INTO glue.test.inventory VALUES (1, 'Pasta-thin', 60, 45,
'3/25/2023"),

(2, 'Bread-white', 55, 6, '3/10/2023'),

(3, 'Eggs-nonorg', 100, 8, '3/12/2023'),

(4, 'Sausage-pork', 72, 25, '3/29/2023'),

(5, 'Coffee-vanilla', 30, 45, '3/12/2023'),

(6, 'Maple Syrup', 20, 85, '3/29/2023'),

(7, 'Protein Bar', 120, 5, '3/15/2023")

)

Let’s query the table to make sure all the data is in there correctly:
spark.sql("SELECT * FROM glue.test.inventory").toPandas()
The results should look like this:

product_id product_name stock_level price last_updated
1 Pasta 50 35 3/24/2023
6 Maple Syrup 20 85 3/29/2023
7 Protein Bar 120 5 3/15/2023
2 Bread-brown 87 8 3/25/2023
3 Eggs-organic 30 11 3/26/2023
4 Sausage-chicken 100 20 3/24/2023
1 Pasta-thin 60 45 3/25/2023
5 Coffee-arabica 45 60 3/18/2023
2 Bread-white 55 6 3/10/2023
3 Eggs-nonorg 100 8 3/12/2023
4 Sausage-pork 72 25 3/29/2023

Now let’s create the second Iceberg table, inventory_summary, which is a transformed
dataset with aggregated values. This table is the primary source of data for the
downstream BI reports that would help store managers get insights about the stock
levels in a particular store:

spark.sql("'''CREATE TABLE glue.test.inventory_summary(
product_1id string,
total_stock string,
avg_price string) USING iceberg''')

spark.sql('''INSERT INTO glue.test.inventory_summary
SELECT

Implementing Change Data Capture with Apache Iceberg | 297

product_id,
SUM(stock_level) AS total_stock,
AVG(price) AS avg_price

FROM glue.test.inventory_new

GROUP BY product_id;

D)

Let’s query the table to make sure we got the right data:

spark.sql("SELECT * FROM glue.test.inventory_summary").toPandas()
The results should look like this:

product_id total_stock avg_price

1 110.0 40.0
2 142.0 7.0

6 20.0 85.0
3 130.0 13.5
4 172.0 22.5
5 75.0 52.5
7 120.0 5.0

Apply Updates from Operational Systems

Now, to apply all the updates from the operational databases to the Iceberg tables,
we will run a Spark-based ETL job. Iceberg allows you to do row-level updates with
transactional guarantees. Here’s a simple query to simulate a possible update to our
inventory data:

spark.sql('''UPDATE glue.test.inventory
SET stock_level = stock_level - 15
WHERE product_name = 'Bread-white' ''")

Capturing the changes from the operational source system and
loading them into the data lake is not within the scope of this use
case. We have assumed that the changes are made available as a
file in the S3 data lake and are then applied to the affected records
using the UPDATE command in Iceberg.

If we now query the inventory table, we should see the updated stock levels:

spark.sql("SELECT * FROM glue.test.inventory").toPandas()

298 | Chapter 14: Real-World Use Cases of Apache Iceberg

Notice how the Pasta and Bread-white items have reduced in stock:

product_id product_name stock_level price last_updated
1 Pasta 30.0 35 3/24/2023
6 Maple Syrup 20 85 3/29/2023
2 Bread-white 40.0 6 3/10/2023
2 Bread-brown 87 8 3/25/2023
1 Pasta-thin 60 45 3/25/2023
7 Protein Bar 120 5 3/15/2023
3 Eggs-organic 30 11 3/26/2023
4 Sausage-chicken 100 20 3/24/2023
5 Coffee-arabica 45 60 3/18/2023
3 Eggs-nonorg 100 8 3/12/2023
4 Sausage-pork 72 25 3/29/2023

Create the Change Log View to Capture Changes

Next, we'll create a change log view to capture alterations in the inventory_summary
table and update it efficiently based solely on changes, avoiding full recomputation.
We'll leverage Iceberg’s built-in Spark procedure, create_changelog_view(), to exe-
cute this task. To capture changes, we have two options: use start and end snapshot
IDs or use start and end timestamps. In this example, we'll use specific snapshots as
our reference points, with the start occurring after the initial inventory table record
ingestion and the end following the ETL job execution. To obtain these snapshot IDs,
we'll query the default history metadata table provided by Apache Iceberg:

spark.sql("SELECT * FROM glue.test.inventory.history").toPandas()

Let’s assume that from inspecting our history table we've determined the target snap-
shot IDs are 4816648710583642722 and 2557325773776943708 (this may be different
for you in practice). Now let’s run the procedure:

spark.sql("""CALL
glue.system.create_changelog_view(
table => 'glue.test.inventory',
options => map(
'start-snapshot-id’,
'4816648710583642722",
'end-snapshot-id',

Implementing Change Data Capture with Apache Iceberg | 299

'2557325773776943708"
yymey

This procedure creates a change log view called inventory_changes that allows us to
see the changes made to the table between the first and second snapshots specified.
Lets query all the changes and see what this change log looks like:

spark.sql("SELECT * FROM inventory_changes").toPandas()
The results of querying the change log should look like this:

product_id last_updated _change_type _change_ _commit_
ordinal snapshot_id

2 oo eee ... 3/10/2023 INSERT 0 2557325773776943708
2 cee wee ... 3/10/2023 DELETE 0 2557325773776943708
1 cee wee ... 3/24/2023 DELETE 1 2959510555509473926
1 cee wee ol 3/24/2023 INSERT 1 2959510555509473926

Merge Changed Data in the Aggregated Table

The last step involves updating the downstream aggregated inventory_summary table,
utilized by BI reports to extract store stock-level insights. Crucially, we aim to avoid recal-
culating aggregates for the entire dataset with every update. Instead, we focus on making
only the essential adjustments when a product’s stock level changes. This approach
ensures computational and time efficiency, guaranteeing that BI reports consistently
access the latest data without burdening the system with constant full recalculations.

In the following code, we'll first create a view from our change log data that is made
up of the aggregated changes. We can then merge those aggregated updates into our
inventory_summary table to have an updated summary table for our BI dashboard:

Create the Aggregated View
spark.sql("""
CREATE OR REPLACE TEMPORARY VIEW aggregated_changes AS
SELECT
product_id,
SUM(CASE
WHEN _change_type = "INSERT' THEN stock_level
WHEN _change_type = 'DELETE' THEN -stock_level
ELSE @ END) AS total_stock_change,
AVG(price) AS new_avg_price
FROM
inventory_changes
GROUP BY
product_1id
"

300 | Chapter 14: Real-World Use Cases of Apache Iceberg

Merge the Aggregated View into our Inventory Summary
spark.sql("""
MERGE INTO glue.test.inventory_summary AS target
USING aggregated_changes AS source
ON target.product_id = source.product_id
WHEN MATCHED THEN
UPDATE SET
target.total_stock = target.total_stock + source.total_stock_change
WHEN NOT MATCHED THEN
INSERT (product_id, total_stock, avg_price)
VALUES (source.product_id, source.total_stock_change,
source.new_avg_price)
oy
Note that in a production environment, these operations for CDC would typically
be automated and continuously monitored for optimal performance and reliability.
Automation tools, such as Apache Airflow or cron jobs, could be employed to sched-
ule and execute the CDC tasks at regular intervals, ensuring that data is updated
in near-real time. Monitoring and alerting mechanisms would also be integral, with
systems in place to log detailed operations and send notifications in case of failures
or anomalies. This setup ensures timely data updates and quick issue resolution and
maintains data integrity and consistency across the ecosystem.

Let’s query the aggregated table now to see the changes:
spark.sql("SELECT * FROM glue.test.inventory_summary").toPandas()
As you can see, the records for product_ids 1 and 2 have changed and reflect the

updates made to the underlying source table:

product_id total_stock avg_price

1 90.0 40.0
2 127.0 7.0

6 20.0 85.0
3 130.0 13.5
4 172.0 22.5
5 75.0 52.5

The BI report that works off the inventory summary used to monitor stock levels is
now also updated, as shown in Figure 14-7.

Implementing Change Data Capture with Apache Iceberg | 301

Stock by products

R

0 20 40 60 80 100 120 W0 160
Average total stock

Product ID
-~ O U W

Figure 14-7. The updated BI dashboard reflecting updates to inventory summary

Using Apache Iceberg’s change log view, we've addressed a critical issue for Green-
Mart, offering several advantages. This approach delivers speed and efficiency by
computing only the differences, leading to reduced processing time and cost savings.
It ensures near-real-time reports for analysts, granting access to up-to-date inventory
insights, product popularity, and restocking needs. Moreover, as GreenMart grows
and its inventory data expands, this approach ensures scalable and efficient data
processing.

Conclusion

In this chapter, we walked through a range of analytical use cases with Apache Iceberg
as the table format on top of data lakes. From ensuring high-quality data to building
BI dashboards and capturing changes, we've explored how to practically implement
these critical applications.

With that, we have reached the end of our exploration of the Apache Iceberg table
format, and you can now build effective data platforms.

302 | Chapter 14: Real-World Use Cases of Apache Iceberg

A

ABAC (attribute-based access control), 257
access control lists (ACLs), 245, 250, 253-254
access controls

authentication and identity management,

244, 249-250, 255

Azure Key Vault, 252

bucket policies (Amazon S3), 248

catalog-level pros and cons, 262

Dremio, 258-260

encryption (see encryption)

least privilege access principle, 244

Nessie, 263

RBAC, 252, 257, 259, 261-262, 264

semantic layer best practices, 257

TBAC, 265-267
ACID transactions/guarantees, 12, 14, 20, 23
ACLs (access control lists), 245, 250, 253-254
Actions package, 69-74
adding columns (ALTER TABLE), 129, 149
add_files procedure, migrating to Iceberg, 276
ADLS (Azure Data Lake Storage), 101, 251-254
aggregate reflections, 291, 293
aggregation queries, 134-135, 151, 297
all_data_files metadata table, 196-198
all_manifests metadata table, 198-200
ALTER TABLE, 78

branching in Iceberg, 209

Dremio, 149-150

Flink, 170

Spark SQL, 128-133
ALTER TABLE...ADD COLUMN, 129
ALTER TABLE...ADD COLUMNS, 149

Index

ALTER TABLE...ADD PARTITION FIELD
(Spark), 131
ALTER TABLE...ALTER COLUMN, 129
ALTER TABLE...DROP COLUMN, 130
ALTER TABLE...DROP PARTITION FIELD
(Spark), 131
ALTER TABLE..RENAME COLUMN, 129
ALTER TABLE..RENAME TO, 128
ALTER TABLE...REPLACE PARTITION
FIELD (Spark), 131
ALTER TABLE...SET TBLPROPERTIES, 128
ALTER TABLE...SET/DROP IDENTIFIER
FIELDS, 132
ALTER TABLE...WRITE DISTRIBUTED BY
PARTITION (Spark), 132
ALTER TABLE..WRITE ORDERED BY, 132
Amazon DynamoDB, 101, 241
Amazon S3 (Amazon Simple Storage Service),
5
and Hadoop catalog atomicity issue, 101
as Iceberg catalog, 42
real-time data streaming, 241-242
security and governance, 246-251
in Spark configuration, 123
Amazon Web Services (AWS), streaming with,
239-242
analytical workloads, 4-7, 31
analytics, data lakes versus data warehouses, 13
Apache Avro, 31
Apache DataSketches library, 41
Apache Flink, 163-179
configuration, 163-166
DataFrame and Table APIs, 174-179
DDL operations, 166-170

303

reading data, 170-172, 229-231
streaming with, 227-235
writing data, 172-173
Apache Hudi, 275
Apache Iceberg, 3-27
architecture, 22-23
data lakehouses, 14-16
data lakes, 10-14
data warehouses, 7-10, 13
Flink DataStream and Table APIs with,
228-235
historical development, 3-7, 20-22
key features, 23-27
production (see production practices)
Spark Structured Streaming with, 223-227
streaming advantages, 221-222
table formats, 16-20
Apache Iceberg Sink Connector (Kafka),
236-239
Apache Kafka Connect, 235-239
Apache ORC, 31
Apache Parquet, 15, 31, 71
Apache Spark, 117-143
Actions package, 69-74, 89
CDC implementation exercise, 295-302
configuration with Iceberg, 117
DDL operations, 124-133
Hive tables migration to Iceberg, 273-274
for migrating catalogs, 110-113
as MPP, 7
reading data, 133-137, 223-227
Spark SQL (see Spark SQL)
streaming with, 222-227
table maintenance, 141-142
table property support, 91
turning off caching, 93
Write- Audit-Publish use case, 284-290
writing data, 137-140
APIs, and object storage, 96
architecture (Iceberg), 22-23, 29-43
ASSIGN (Nessie), 218
atomic operations
Hadoop catalog issue, 101
JDBC connected database requirement, 107
multitable transactions, 213
updating metadata pointer, 42, 100
attribute-based access control (ABAC), 257
audit trails, security, 245

authentication and identity management, 244,
249-250, 255

authorization feature (Nessie), 263

averages, finding among records, 135

AVG(), aggregation queries, 135, 151

AWS CloudTrail, 267

AWS Glue, 123, 157-162
configuration, 157-160
Spark all configurations setup, 122-123

AWS Glue Data Catalog, 42, 103, 161-162,
265-267

AWS Glue Studio, 241-242

AWS Key Management Service, 247

AWS Lake Formation service, 265-267

AWS SDK package, 123

Azure Data Lake Storage (ADLS), 101, 251-254

Azure Key Vault, 251

B
batch reading, 68
catalog branching, 212
Flink, 170, 229, 230
Spark microbatching, 223
batch writing (Flink), 232
BI (business intelligence), 3, 9, 290-294
binpack compaction strategy, 74-76, 154
binPack, SparkActions, 69
blobs, puffin files, 40-41
bloom filters, datafile, 97
Blue, Ryan, 20
branching of tables, 208-210
catalog, 211
isolating changes with, 207-213
monitoring, 205-206
reading branches (Flink DataStream API),
231
WAP use case, 284-290
bucket policies, 248, 255
buckets, object storage, 85, 96, 101
business intelligence (BI), 3, 9, 290-294

C

caching, turning off Spark, 93
Catalog interface, Spark, 122
catalogs, 99-114
architecture, 42-43
AWS Glue Data Catalog, 42, 103, 161-162,
265-267
branching, 207, 211-213

304 | Index

custom (Spark), 122
Dremio source mapping to Iceberg, 146
Flink DDL operations, 166-168
Hadoop, 100-102, 120, 166
Hive, 102, 167
JDBC, 107
migration, 102, 108-113
Nessie, 42, 104, 218
OLAP workloads, 6
reads and writes, 46, 50, 58
requirements of, 99
REST, 105
rollbacks at catalog level, 218
security and governance, 262-267
Spark configuration, 119-122
tagging, 212
time-travel queries, 63
updating catalog file, 49
CEL (Common Expression Language), 263
change data capture (CDC), implementing,
295-302
change log view, CDC use case, 299
cherrypick_snapshot, 217
closed form data architecture, 9
cloud computing and storage
data warehouse development, 8
development of, 11
Hive catalog, 103
JDBC catalog, 107
Nessie, 105
REST catalog, 106
Tabular, 264
CMEK (customer-managed encryption keys),
251, 254
Codd, Edgar, 16
column-based access controls (Dremio), 259
columnar structure, 5, 31
Common Expression Language (CEL), 263
compaction, 67-82
Actions package with Spark, 69-74
automating, 76
binpack strategy, 74-76, 154
and MOR, 89
sort strategy, 76-80
strategies review, 74-75
z-order sort strategy, 74, 80-82
compute engines, 6

(see also Dremio’s SQL Query Engine; Spark

SQL)

data lake versus data warehouse, 11
interaction with storage engine in data
tables, 16
Java API, 231
for migrating catalogs, 110-113
potential specification honoring issue, 90
conditional queries, 134
COPY INTO
Dremio, 153
rewriting data into Iceberg, 279-281
copy-on-write (COW), 55, 87-91
cost of storing and executing queries on data
data lake benefits, 12
data lakehouse benefits, 15
COUNT()
aggregation queries, 134
Dremio, 151
counting records, aggregation queries, 134
CREATE (Iceberg), 48
CREATE CATALOG (Flink), 166-168
CREATE DATABASE (Flink), 168
CREATE TABLE, 77
Dremio, 147-149
Flink, 169-170
Spark SQL, 124-127
CREATE TABLE...AS SELECT (CTAS), 78
AWS Glue, 158
migrating to Iceberg with, 278-279
Spark SQL, 127
CREATE TABLE...LIKE (Flink), 169
CREATE TABLE...PARTITIONED BY (Flink),
169
create_changelog_view(), 299
create_data_frame.from_catalog() (AWS Glue),
161
CSV files, copying into Iceberg, 280-281
current-snapshot-id, 58
custom catalog (Spark), 122
customer-managed encryption keys (CMEK),
251, 254
customer-provided encryption keys (SSE-C),
247

D

DAS (direct-attached storage), 5

data consistency, 20
(see also multitable transactions)

Data Definition Language (DDL) operations
Dremio, 147-150

Index | 305

Flink, 166-170
Spark, 124-133
data drift, 9, 14
data engineering/science workflow use case
(Nessie), 105
data lakehouses, 14-16, 292
data lakes, 10-14, 16-20, 32
data layer, 30-34, 46
data lineage, 257
Data Manipulation Language (DML), 6
data marts, 292
data masking, 257
data quality checks (WAP use case), 286-289
data recovery
historical data snapshots, 15
history metadata table, 184-186, 299
data retention and disposal policies, 245
data warehouses, 7-10
analytics for, 13
and compute engines, 11
data marts, 292
headless warehouse (Tabular), 264
data-as-code paradigm, Nessie’s support for,
104
datafile path, time-travel queries, 63
datafiles, 16, 31
all_data_files metadata table, 196-198
compaction of (see compaction)
immutability of, 87
migrating individual files to Iceberg,
276-277
reading (see reading data)
reducing number of (bloom filters), 97
securing, 244-256
using metadata tables in conjunctions, 204
writing (see writing data)
DataFrame API
AWS Glue, 161
Flink, 174-179
reading data operations, 134-136
Spark DDL operations, 125-128
writing data operations, 137-140
DataFrame, converting Glue DynamicFrame
to, 160
DataStream API (Flink), 174-179, 228-233
DataStreamWriter (Spark), 223
date-related partition transforms, 85
DDL (Data Definition Language) operations
Dremio, 147-150

Flink, 166-170
Spark, 124-133
DEFINER (Trino), 260
DELETE (Dremio), 153
delete files, 30, 32-34
DELETE FROM (Spark), 140
Delta Lake, 274-275, 277
democratization of data, 9
direct-attached storage (DAS), 5
directories versus files as basis for table format,
19
distributed filesystems, 5
in data layer, 30
HDEFS, 5, 10, 101, 245-246
DML (Data Manipulation Language), 6
double quotation marks (Spark SQL where fil-
ter), 73
Dremio
catalog, 6
COPY INTO for incremental data ingestion,
281
integrations for BI tools, 294
as MPP, 7
OPTIMIZE with Iceberg, 74
semantic layer, 257-260
Dremio Cloud, 145
Dremio Lakehouse Platform, 145-155
Dremios SQL Query Engine, 47, 145-155
configuration, 145-147
DDL operations, 147-150
reading data, 150-152
table maintenance, 154-155
writing data, 152-154
DROP TABLE
Dremio, 150
Flink, 170
Hadoop, 101
Spark, 133
DROP TABLE...PURGE (Spark), 133
dropping a column (ALTER TABLE), 130, 150
dynamic overwrite mode, INSERT OVER-
WRITE, 139
dynamic table options, stream reading, 229
DynamicFrame (AWS Glue), 160
DynamoDB, 101, 241

E

encryption, 244
ADLS, 251

306 | Index

Amazon S3, 247-248
GCS, 254
HDEFS, 246
encryption zones, 246
entries metadata table, 202-204
equality delete files, 34, 87, 89
ETL (extract, transform, load) jobs, 13,
158-160, 298
execute (SparkActions), 69
EXPIRE SNAPSHOTS (Dremio), 154
expire_snapshots, 93, 141
expiring snapshots to save on storage, 93-94
Expressions library, 72
extension module (Spark SQL), 130-133
extract, transform, load (ETL) jobs, 13,
158-160, 298

F

Facebook, and Hive development, 17
fanout writer option, streaming data, 223
file formats
Iceberg’s agnosticism, 31
OLAP workloads, 5
file size and row group size (Parquet), 71
file-level security, 244-256
files metadata table, 189-192
files versus directories as basis for table format,
19, 21
filter (SparkActions), 70, 89
filter rows query (Spark), 134
filtering rows (Dremio), 150
fixed versus variable costs in reading data, 68
Flink (see Apache Flink)
Flink SQL Client, 165-173
FlinkSink.forRowData() API, 232
FlinkSource class (Java), 231

G

GlueContext object, 161

GlueContext.write_data_frame.from_catalog(),
161

Google Cloud Storage (GCS), 254-256

governance and security (see security and gov-
ernance)

H

Hadoop
catalog, 100-102, 120, 166

ecosystem, 10
Hadoop Common libraries (Flink), 164
Hadoop Distributed File System (HDEFS), 5, 10,
101, 245-246
hash function, bloom filters, 97
hash write distribution, 95, 97
headless warehouse (Tabular), 264
hidden partitions, 25, 47, 84-85, 169
Hints pattern, streaming data, 229
historical data snapshots, 15
history metadata table, 184-186, 299
Hive framework, 10, 17-19
catalog, 102, 167
migrating tables to Iceberg, 272-274
Hive Metastore, 17, 42, 103, 120
HudiTolcebergMigrationActionsProvider, 275

|
IAM (identity and access management), 244,
249-250, 255
Iceberg (see Apache Iceberg)
iceberg-catalog-migrator procedure, 109-110
iceberg-delta-lake module, 274
iceberg-hudi module, 275
iceberg-spark-runtime package, 118
identifier fields, setting or dropping (Spark),
132
identity and access management (IAM), 244,
249-250, 255
immutability
datafiles and COW versus MOR, 87
snapshots and time-travel queries, 26
in-place migration, 270-271
INSERT INTO, 50
Dremio, 152
Flink, 172, 232
setting sort order with, 78
Spark SQL, 137
INSERT INTO SELECT, rewriting data into
Iceberg, 278
INSERT OVERWRITE
Flink, 172, 232
Spark SQL, 138-140
inserting the query, writing queries, 50-53
INVOKER (Trino), 260
isolation of changes with branches, 207-213
isolation of database systems, multitable trans-
actions, 213

Index | 307

J

JAR files, adding to Spark, 118

Java (Flink), 163, 174-178

Java API, batch reads with Flink, 231
Java Database Connectivity (JDBC), 107
JobManager (Flink), 165

K

Kafka Connect, 235-239
kafka-connect-iceberg module, 238

Key Management Service (KMS) (AWS), 247
Key Management System (KMS) (GCS), 255

L

logs and logging
metadata_log_entries metadata table,
186-187
for security, 245

M

machine learning (ML), 3
data warehouse limitations, 9
manifest files, 23, 35
all_manifests metadata table, 198-200
reading process, 59-60, 63
rewriting, 92, 142, 155
schema of, 36
writing process, 51, 56
manifest lists, 23, 36-38
reading process, 58, 63
writing process, 51, 56
manifests metadata table, 192-194
MapReduce, 10, 17
massively parallel processing (MPP) systems, 7,
95-96
Maven project, creating Flink job, 174-176
Maven-based packages, 118, 178
MAX()
aggregation queries, 135
Dremio, 151
max-concurrent-file-group-rewrites (SparkAc-
tions), 70
max-file-group-size-bytes (SparkActions), 70
MERGE INTO, 54-56
CDC implementation use case, 300-302
Dremio, 54, 153, 281
Flink, 173
Spark SQL, 54, 138

merge-on-read (MOR), 32, 55, 87-91
metadata files, 38-40
reading process, 58, 63
writing process, 48-49, 50-52, 55-56
metadata layer, 22-23, 35
(see also catalogs)
architecture, 35-41
files (see metadata files)
manifests (see manifest files)
partition evolution role of, 85
partition field changes as metadata-only,
132
reads and writes, 46
metadata pointer, 42
metadata tables, 61, 184-206
all_data_files, 196-198
all_manifests, 198-200
entries, 202-204
files, 189-192
Flink SQL access to, 171
history, 184-186, 299
manifests, 192-194
metadata_log_entries, 186-187
partitions, 194-195, 205
refs, 200-202
snapshots, 187-189
using in conjunction, 204-206
metadata tags, object storage, 96
metadata_log_entries metadata table, 186-187
metrics collection, 91
MFA (multifactor authentication), 244
microbatching (Spark), 223
Microsoft SQL Server, 4
migrate
between Iceberg catalogs, 109
Hive tables to Iceberg, 86, 273
migrating between Iceberg catalogs, 102,
108-113
migrating to Apache Iceberg, 269-282
from Apache Hudi, 275
from Delta Lake, 274-275
from Hive tables, 272-274
individual datafiles, 276-277
planning considerations, 270-272
by rewriting data, 277-282
ML (see machine learning)
model decay, data warehouse limitations, 9
modifying column attributes (ALTER TABLE),
129, 149

308 | Index

monitoring and alerting systems, 245

MOR (merge-on-read), 32, 55, 87-91

MPP (massively parallel processing) systems, 7,
95-96

multifactor authentication (MFA), 244

multitable transactions, 213-214
AWS Glue catalog’s lack of support for, 104
Hive catalog’s lack of support for, 103
JDBC catalog’s lack of support for, 107
Nessie’s support for, 105
REST catalog support for, 106

MySQL, with JDBC catalog, 107

N

Nessie (see Project Nessie)
Netflix, and Iceberg development, 20

0
object ACLs
Amazon S3, 250
GCS, 255
object storage
as a service, 5
buckets in, 85, 96, 101
in data layer, 30
development of cloud-based, 11
optimizing performance, 96-97
OLTP (online transaction processing), 4
online analytical processing (OLAP) work-
loads, 4-7, 31
(see also data warehouses)
online transaction processing (OLTP), 4
open file formats, 10, 12, 15
optimistic concurrency control, 23
OPTIMIZE (Dremio), 74
optimizing performance, 6, 67-98
(see also metadata layer)
bloom filters, datafile, 97
compaction (see compaction)
COW versus MOR, 87-91
data lake limitations in, 12
expiring snapshots to save on storage, 93-94
fanout writer option, streaming, 223
Iceberg’s metadata focus for query speed, 21
metrics collection, 91
object storage, 96-97
obtaining faster queries with data lakehouse,
14
orphan file management, 94

partitioning, 82-86

reading process, 59

reducing data drift, 14

rewriting manifests, 92

sorting’s role in, 76-80

write distribution mode, 95-96

z-order sort, 74, 80-82
option (SparkActions), 70
options (SparkActions), 70
org.apache.iceberg.spark.SparkCatalog, 120
org.apache.iceberg.spark.SparkSessionCatalog,

121
orphan file management, 94, 142
overwriting data (FlinkSink), 232

P

parallelism, and object storage limitations, 96
parameters settings (AWS Glue), 159
Parquet, 15, 31, 71
partial progress, 71, 89
partial-progress-enabled (SparkActions), 70
partial-progress-max-commits (SparkActions),
70
partition evolution, 24, 85, 205
partition-spec-id, 59
partitions and partitioning, 82-86
adding/dropping/replacing with Spark SQL,
131
creating table with partitions, 125-126, 147
Flink partitioned table, 169
hidden, 47, 84-85, 169
migrating to Iceberg by partition, 271
overwrite modes, 138-140, 173
partition field changes as metadata-only,
132
rewriting datafiles for specific partitions,
155
transform functions with Dremio, 148
writing distributed by partition, 132
partitions metadata table, 194-195, 205
performance (see optimizing performance)
permission systems
ADLS, 252, 254
AWS 1AM, 249-250
GCSIAM, 255
HDFS, 246
Nessie authorization, 263
positional delete files, 33, 87, 89
Postgres, 6

Index | 309

PostgreSQL, 4, 107
PrestoSQL (see Trino)
production practices, 183-219
isolation of changes with branches, 207-213
metadata tables, 184-206
multitable transactions, 213-214
requirements for catalogs, 100
rolling back changes, 214-219
Project Nessie, 6, 42
branching and tagging of catalog, 211-213
catalog-level rollbacks, 218
migrating catalog, 109
multitable transactions, 214
pros and cons of catalog, 104
security and governance, 263-264
puffin files, 40-41
PyFlink, 163
PySpark, configuring Iceberg with, 119

Q

queries
aggregation, 134-135, 151, 297
conditional, 134
cost of storing and executing, 12, 15
data layer as source for answering, 30
faster queries with data lakehouse, 14
inserting, 50-53
interaction with Iceberg components, 45-65
read process, 57-65, 87
SELECT, 58-60, 134, 139, 150
time-travel, 26, 61-65
write process, 46-56

R
range write distribution, 95
RANK(), window functions, 136, 152
RBAC (see role-based access control)
RDBMS (relational database management sys-
tems), 3, 16
READ query, 57-65, 87
reading data
AWS Glue, 161
batch method (see batch reading)
catalogs, 46, 50, 58
DataFrame API, 134-136
Dremio, 150-152
Flink, 170-172, 229-231
manifest files, 59-60, 63
manifest lists, 58, 63

metadata files, 58, 63

metadata layer, 46

query process, 57-65, 87

Spark, 133-137

Spark Streaming, 223-227

time-travel queries, 61-65
refs metadata table, 200-202
register command, 109-110
register_table() (Spark SQL), 111
relational database management systems

(RDBMS), 3, 16
removeOrphanFiles (Iceberg), 94
remove_orphan_files (Spark), 142
rename operations

columns (ALTER TABLE), 129, 149

Hadoop catalog limitations, 101

tables (ALTER TABLE), 128
REPLACE PARTITION (Iceberg), 86
REST catalog, 105
retail sales data use case, 233-235
REWRITE DATA (Dremio), 154
REWRITE MANIFESTS (Dremio), 155
rewrite-job-order (SparkActions), 70
rewriteDataFiles (SparkActions), 69, 72, 74, 86
rewriteManifests (Iceberg), 92
rewrite_data_files (Spark), 141
rewrite_manifests (Spark), 142
rewriting data, migrating to Iceberg, 277-282
role-based access control (RBAC), 252, 257

Dremio, 259

Tabular, 264

Trino, 261-262
rollback_to_snapshot (Iceberg), 215-216
rollback_to_timestamp (Iceberg), 216
rolling back changes, 185, 214-219
row group size and file size (Parquet), 71
row-based column access controls (Dremio),

259
row-level table operations, 26

COW, 55, 87-91

MOR, 32, 55, 87-91

updates, 87
row-oriented versus columnar databases, 5

S

safety of transactions, 20, 21, 137

scalability, Iceberg’s development for, 21
schema-on-read data ingestion, data lake, 12
schemas

310 | Index

creating table, 48
evolution of, 27
manifest file, 36
metadata file, 38
security and governance, 243-268
catalogs, 262-267
datafiles, 244-256
general operational considerations, 267
row access and column masking policies,
148
semantic layer, 256-262
SELECT * (select all) query, 134
SELECT * FROM...WHERE (Spark), 134
SELECT query
Dremio, 150
dynamic overwrite mode, 139
Flink, 229
reading queries, 58-60
semantic layer, security and governance,
256-262
semistructured file formats (JSON), 5
sequence numbers, delete files, 34
server-side encryption (SSE), 247-248
service level agreements (SLAs), streaming,
75-76
SET REF (Nessie), 218
set_current_snapshot (Iceberg), 216
shadow migration, 270, 272
sharing real-time data use case, 226-227
SHOW LOG (Nessie), 218
“small files problem”, 68
snapshot (Iceberg), 273
snapshot IDs, 62, 93
snapshot isolation, 87
snapshot() (Spark SQL), 112-113
snapshotDeltaLakeTable (Iceberg), 274
snapshotHudiTable, 276
snapshots
branching (see branching)
creating, 49
expire_snapshots procedure, 141
Flink SQL access to, 172
manifest lists (see manifest lists)
partial progress, 71, 89
tags (see tags and tagging)
time travel, 26, 61-65
snapshots metadata table, 187-189
Snowflake, 7
Sort (SparkActions), 70

sort order
Iceberg preset, 75
writing data (Spark), 132

sorting and sort compaction strategy, 74, 76-82

Spark (see Apache Spark)
Spark Shell (spark-shell), 118
Spark SQL
AWS Glue catalog, 104
configuration with Iceberg, 118
creating a table, 47
DDL operations, 124-133
extension module, 130-133
Hadoop catalog, 102
Hive catalog, 103
JDBC catalog, 107
migrating catalog using, 110-113
Nessie catalog, 105
partial progress for snapshots, 72
REST catalog, 106
Spark Structured Streaming API, 223-227
spark.table() (DataFrame API), 134
SparkActions, 69-82
SparkCatalog, 120
SparkSession.builder (PySpark), 119
SparkSessionCatalog, 121
SQL, Hive and MapReduce, 10, 17
SSE (server-side encryption), 247-248
SSE with Google-managed keys, 254

SSE-C (SSE with customer-provided keys), 247

SSE-KMS (SSE with AWS KMS), 247
SSE-S3 (SSE with S3-managed keys), 247
static overwrite mode (Spark), 138
statistics

Iceberg versus Hive in managing data, 36

improving metadata collection, 20
storage

DAS, 5

expiring snapshots to save, 93-94

object (see object storage)

OLAP workloads, 5

securing datafiles, 244-256
storage engines

data lake’s lack of, 11

OLAP workloads, 6

table format role of, 16
streaming data, 221-242

Apache Kafka Connect, 235-239

Flink, 227-235

SLAs, 75-76

Index |

M

structured data, and data warehouse limita-
tions, 9
structured file formats (CSV, Avro), 5
SUM()
aggregation queries, 135
Dremio, 151

T
Table API (Flink), 174-179, 228-233
table formats, 16-20
and data lakehouse advantages, 14-15
modern data lake, 19
OLAP workloads, 6
table maintenance
Dremio’s SQL Query Engine, 154-155
Spark, 141-142
table properties
COW versus MOR, 90
in metrics tracking, 92
setting specific (ALTER TABLE), 128
Spark support for, 91
table tagging, 210
table-level rollbacks, 214-218
TableLoader (Java), 231
Tabular, 264
tag-based access control (TBAC), 265-267
tags and tagging
catalog, 212
metadata tags, 96
reading tags (Flink DataStream API), 231
table, 210
target-file-size-bytes (SparkActions), 70
TaskManager (Flink), 165
TDE (transparent data encryption), 246
Theta sketch, 41
time travel, 26, 61-65
timestamp
hidden partitions for transforms in, 85
rollback_to_timestamp, 216
running time-travel queries, 61
transactional versus analytical workloads, 4
transactions
ACID guarantees, 12, 14, 20, 23
multitable (see multitable transactions)
OLTP, 4
transparent data encryption (TDE), 246
Trino, 260-262
truncate transform, and hidden partitions, 85
tuning commit rate, streaming data, 224

u
UDPFs (user-defined functions), 148, 259
unstructured data, data lake’s handling of, 12
unstructured file formats (text files), 5
UPDATE
Dremio, 154
Spark SQL, 140
updating
catalog file, 49
metadata pointer, 42, 100
row-level table operations, 87
UPSERT/MERGE INTO, 54-56
Dremio, 54
Flink, 173
Spark SQL, 54
upserting data (FlinkSink), 232
use cases
business intelligence, 290-294
CDC implementation, 295-302
data engineering/science workflow, 105
files metadata table, 191
Hadoop catalog, 102
Hive catalog, 103
retail sales data, 233-235
sharing real-time data, 226-227
snapshots metadata table, 188
types and frequency of operations, 188
Write- Audit-Publish (WAP), 209, 283-290
user experience, Iceberg mission to improve, 21
user roles, permissions (see permission sys-
tems)
user-defined functions (UDFs), 148, 259

v
VACUUM method (Dremio), 154
variable versus fixed costs in reading data, 68
vectorized query engine (Dremio), 145
vendor lock-in, 15
version control

history metadata table, 185

snapshots metadata table, 187-189
version rollback, snapshots for, 26
virtual data marts, data lakehouse, 292
virtual datasets, Dremio’s semantic layer, 257

W
Weeks, Daniel, 20
where (SparkActions), 89

312 | Index

wiki feature, Dremio’s semantic layer, 258
window functions, 136-137, 152
write distribution mode, 95-96, 132
Write-Audit-Publish (WAP), 209, 283-290
writing data, 46-56
catalogs, 46, 50, 58
creating a table, 47-49
to data lakes with Spark, 132, 137-140
delete files for optimization, 89
Dremios SQL Query Engine, 152-154
with Flink, 172-173, 231-233
inserting the query, 50-53

manifest files, 51, 56

manifest lists, 51, 56

merging the query, 54-56

metadata layer, 46

rewriting data for migration, 277-282
Spark, 137-140

Spark Streaming into Iceberg, 223-225

z-order sort, 74, 80-82
zOrder method (SparkActions), 70

Index

313

About the Authors

Tomer Shiran is the founder and chief product officer of Dremio, an open data
lakehouse platform that enables companies to run analytics in the cloud without the
cost, complexity, and lock-in of data warehouses. As the company’s founding CEO,
Tomer built a world-class organization that has raised more than $400 million and
now serves hundreds of the world’s largest enterprises, including three of the Fortune
5. Prior to Dremio, Tomer was the fourth employee and VP at MapR, a big data
analytics pioneer. He also held numerous product management and engineering roles
at Microsoft and IBM Research, founded several websites that have served millions
of users and hundreds of thousands of paying customers, and is a successful author
and presenter on a wide range of industry topics. He holds an MS in computer
engineering from Carnegie Mellon University and a BS in computer science from
Technion-Israel Institute of Technology.

Jason Hughes is the director of technical advocacy at Dremio. Previously at Dremio
he has been a product director, technical director, and senior solutions architect. He
has been working in technology and data for more than a decade, including roles
as tech lead for the field at Dremio, the pre-sales and post-sales lead for Presto
and QueryGrid for the Americas at Teradata, and the development, deployment,
and management lead of a custom CRM system for multiple auto dealerships. He
is passionate about making customers and individuals successful and self-sufficient.
When he’s not working, he’s usually taking his dog to the dog park, playing hockey, or
cooking (when he feels like it). Jason lives in San Diego, California.

Alex Merced is a developer advocate for Dremio and has worked as a developer and
instructor for companies such as GenEd Systems, Crossfield Digital, CampusGuard,
and General Assembly. Alex is passionate about technology and has published tech
content on outlets such as blogs, videos, and his podcasts Datanation and Web
Dev 101. He has also spoken at many large industry conferences, such as Data
Council, Data Day Texas, Subsurface, OSA Con, and more. Alex has contributed
to various libraries in the JavaScript and Python worlds including SencilloDB, Coqui-
to]S, dremio-simple-query, and more.

Colophon

The animal on the cover of Apache Iceberg: The Definitive Guide is a type of seabird
known as a whiskered tern (Chlidonias hybrida).

Whiskered terns are small-to-medium buoyant birds with a relatively short, slightly
forked tail. Breeding adults have a black crown and nape as well as white cheeks
and a white undertail. Their upperparts are medium gray, and their underparts are
darker slate. Their bills and legs are red. Nonbreeding adults are much paler, with a
dark-flecked pale crown, a dark patch behind the eye and down the nape, and a black
bill.

Whiskered terns have a wide-ranging habitat. They can be found across southern
Europe and Asia, southeastern Africa and Madagascar, and Australia. They live in
freshwater wetlands, freshwater swamps, brackish lakes, irrigated cropland, artificial
fish ponds, and a variety of other wetlands. Their diet reflects their habitat, consisting
of small fish, amphibians, small crustaceans, and insects.

At one point, the global population of whiskered terns was estimated between
300,000 and 1,500,000. Their prevalence across the globe marks them as a species of
least concern on endangered species lists. However, many of the animals on O’'Reilly
covers are endangered; all of them are important to the world.

The cover illustration is by Karen Montgomery, based on a black-and-white engrav-
ing from British Birds. The series design is by Edie Freedman, Ellie Volckhausen, and
Karen Montgomery. The cover fonts are Gilroy Semibold and Guardian Sans. The
text font is Adobe Minion Pro; the heading font is Adobe Myriad Condensed; and the
code font is Dalton Maag’s Ubuntu Mono.

	Cover
	Dremio
	Copyright
	Table of Contents
	Foreword by Gerrit Kazmaier
	Foreword by Raghu Ramakrishnan
	Foreword by Rick Sears
	Preface
	About This Book
	Why We Wrote This Book
	What You Will Find Inside
	How to Use This Book
	Feedback and Questions
	Conventions Used in This Book
	Using Code Examples
	O’Reilly Online Learning
	How to Contact Us
	Acknowledgments

	Part I. Fundamentals of Apache Iceberg
	Chapter 1. Introduction to Apache Iceberg
	How Did We Get Here? A Brief History
	Foundational Components of a System Designed for OLAP Workloads
	Bringing It All Together

	The Data Warehouse
	A Brief History
	Pros and Cons of a Data Warehouse

	The Data Lake
	A Brief History
	Pros and Cons of a Data Lake

	Should I Run Analytics on a Data Lake or a Data Warehouse?
	The Data Lakehouse
	What Is a Table Format?
	Hive: The Original Table Format
	Modern Data Lake Table Formats
	What Is Apache Iceberg?
	How Apache Iceberg Came to Be
	The Apache Iceberg Architecture
	Key Features of Apache Iceberg

	Conclusion

	Chapter 2. The Architecture of Apache Iceberg
	The Data Layer
	Datafiles
	Delete Files

	The Metadata Layer
	Manifest Files
	Manifest Lists
	Metadata Files
	Puffin Files

	The Catalog
	Conclusion

	Chapter 3. Lifecycle of Write and Read Queries
	Writing Queries in Apache Iceberg
	Create the Table
	Insert the Query
	Merge Query

	Reading Queries in Apache Iceberg
	The SELECT Query
	The Time-Travel Query

	Conclusion

	Chapter 4. Optimizing the Performance of Iceberg Tables
	Compaction
	Hands-on with Compaction
	Compaction Strategies
	Automating Compaction

	Sorting
	Z-order
	Partitioning
	Hidden Partitioning
	Partition Evolution
	Other Partitioning Considerations

	Copy-on-Write Versus Merge-on-Read
	Copy-on-Write
	Merge-on-Read
	Configuring COW and MOR

	Other Considerations
	Metrics Collection
	Rewriting Manifests
	Optimizing Storage
	Write Distribution Mode
	Object Storage Considerations
	Datafile Bloom Filters

	Conclusion

	Chapter 5. Iceberg Catalogs
	Requirements of an Iceberg Catalog
	Catalog Comparison
	The Hadoop Catalog
	The Hive Catalog
	The AWS Glue Catalog
	The Nessie Catalog
	The REST Catalog
	The JDBC Catalog
	Other Catalogs

	Catalog Migration
	Using the Apache Iceberg Catalog Migration CLI
	Using an Engine

	Conclusion

	Part II. Hands-on with Apache Iceberg
	Chapter 6. Apache Spark
	Configuration
	Configuring Apache Iceberg and Spark
	Configuring the Catalogs
	Starting Spark with All the Configurations (AWS Glue Example)

	Data Definition Language Operations
	CREATE TABLE
	ALTER TABLE
	Alter a Table with Iceberg’s Spark SQL Extensions
	DROP TABLE

	Reading Data
	The Select All Query
	The Filter Rows Query
	Aggregation Queries
	Using Window Functions

	Writing Data
	INSERT INTO
	MERGE INTO
	INSERT OVERWRITE
	DELETE FROM
	UPDATE

	Iceberg Table Maintenance Procedures
	Expire Snapshots
	Rewrite Datafiles
	Rewrite Manifests
	Remove Orphan Files

	Conclusion

	Chapter 7. Dremio’s SQL Query Engine
	Configuration
	Data Definition Language Operations
	CREATE TABLE
	ALTER TABLE
	DROP TABLE

	Reading Data
	Using the SELECT Query
	Filtering Rows
	Using Aggregated Queries
	Using Window Functions

	Writing Data
	INSERT INTO
	COPY INTO
	MERGE INTO
	DELETE
	UPDATE

	Iceberg Table Maintenance
	Expire Snapshots
	Rewrite Datafiles
	Rewrite Manifests

	Conclusion

	Chapter 8. AWS Glue
	Configuration
	Creating a Glue Database
	Configuring the Glue ETL Job

	Create a Table Using the Glue Data Catalog
	Read the Table
	Insert the Data

	Conclusion

	Chapter 9. Apache Flink
	Configuration
	Prerequisites
	Start the Flink Cluster and Flink SQL Client

	Data Definition Language Operations
	CREATE CATALOG
	CREATE DATABASE
	CREATE TABLE
	ALTER TABLE
	DROP TABLE

	Reading Data
	Flink SQL Batch Read
	Flink SQL Streaming Read
	Metadata Table

	Writing Data
	INSERT INTO
	INSERT OVERWRITE
	UPSERT

	Flink DataFrame and Table API with Apache Iceberg Tables
	Prerequisites
	Configuring the Flink Job
	Starting the Cluster and Building the Package
	Running the Job

	Conclusion

	Part III. Apache Iceberg in Practice
	Chapter 10. Apache Iceberg in Production
	Apache Iceberg Metadata Tables
	The history Metadata Table
	The metadata_log_entries Metadata Table
	The snapshots Metadata Table
	The files Metadata Table
	The manifests Metadata Table
	The partitions Metadata Table
	The all_data_files Metadata Table
	The all_manifests Metadata Table
	The refs Metadata Table
	The entries Metadata Table
	Using the Metadata Tables in Conjunction

	Isolation of Changes with Branches
	Table Branching and Tagging
	Catalog Branching and Tagging

	Multitable Transactions
	Rolling Back Changes
	Rolling Back at the Table Level
	Rolling Back at the Catalog Level

	Conclusion

	Chapter 11. Streaming with Apache Iceberg
	Streaming with Spark
	Streaming into Iceberg with Spark
	Streaming from Iceberg with Spark

	Streaming with Flink
	Streaming into Iceberg with Flink
	Example of Streaming into Iceberg with Flink

	Streaming with Kafka Connect
	The Iceberg Kafka Sink

	Streaming with AWS
	Conclusion

	Chapter 12. Governance and Security
	Securing Datafiles
	Securing Files: Best Practices
	Hadoop Distributed File System
	Amazon Simple Storage Service
	Azure Data Lake Storage
	Google Cloud Storage

	Securing and Governing at the Semantic Layer
	Semantic Layer Best Practices
	Dremio
	Trino

	Securing and Governing at the Catalog Level
	Nessie
	Tabular
	AWS Glue and Lake Formation

	Additional Security and Governance Considerations
	Conclusion

	Chapter 13. Migrating to Apache Iceberg
	Migration Considerations
	Three-Step In-Place Migration Plan
	Four-Phase Shadow Migration Plan

	Migrating Hive Tables to Apache Iceberg
	The Snapshot Procedure
	The Migrate Procedure

	Migrating Delta Lake to Apache Iceberg
	Migrating Apache Hudi to Apache Iceberg
	Migrating Individual Files to Apache Iceberg
	Using the add_files Procedure
	Migrating from Delta Lake or Apache Hudi Without Preserving History

	Migrating from Anywhere by Rewriting Data
	Migrating Data to a New Iceberg Table
	Migrating Data into an Existing Iceberg Table

	Conclusion

	Chapter 14. Real-World Use Cases of Apache Iceberg
	Ensuring High-Quality Data with Write-Audit-Publish in Apache Iceberg
	WAP Using Iceberg’s Branching Feature

	Running BI Workloads on the Data Lake
	Land the Raw Data into the Data Lake
	Curate Virtual Data Marts/Data Products
	Create a Reflection to Accelerate Our Dashboard
	Connect Our View to Our BI Tool
	Benefits of Running BI Workloads on the Data Lake

	Implementing Change Data Capture with Apache Iceberg
	Create Apache Iceberg Tables
	Apply Updates from Operational Systems
	Create the Change Log View to Capture Changes
	Merge Changed Data in the Aggregated Table

	Conclusion

	Index
	About the Authors
	Colophon

