
Presented by:

Understanding Apache Arrow
August 11th, 2022

Matthew Topol

Subsurface Community Meetup:

Who am I?

Email

matt@voltrondata.com

Author of

“In-Memory Analytics with Apache Arrow”

Staff Software Engineer at Voltron Data
Committer on Apache Arrow repository

https://www.amazon.com/Memory-Analytics-Apache-Arrow-hierarchical-ebook/dp/B09X76LNN9
https://twitter.com/zeroshade
https://www.linkedin.com/in/matt-topol-92390533/

3

A quick primer! https://arrow.apache.org

High Performance In-Memory
Columnar Format

No Data
Serialization/Deserialization

Implementations exist in
many languages!

https://arrow.apache.org

4

Arrow Adoption

Arrow is increasingly being adopted across the Data Science / Analytics
ecosystem

5

What is Columnar?
Table of Data

Row Oriented Memory Buffer Arrow Columnar Memory Buffer

6

A

B

Why Columnar?

Memory Locality
I/O
Vectorization

All Archers in Europe

Only need two columns! (Archer, Location)

1. Spin through Locations for indexes
2. Get Archers at those indexes

Less I/O, Lower Memory usage, Fewer page faults

Calculate Mean for Year column

Only need the one column! (Year)

1. Vectorized operations require contiguous memory
2. Our column is already contiguous memory!

Significantly faster computation!

7

8

Interoperability

Arrow slots easily into
existing popular tools

pandas

NumPy

pyarrow can easily convert between Arrow Arrays and
NumPy without copying the memory

pyarrow easily converts to and from pandas Data Frames
In some cases this can be done with zero copies

Example Case:
Apache Spark Python

Application

Passing Data
Between Python

and Spark

JVM
Spark doing

things

Python
Py4J Java
Gateway

JVM
Gateway

Server

Data gets copied several times!

1. Read 4GB CSV into pandas DataFrame

2. Py4J Java Gateway serializes it (copy)

3. JVM Gateway server deserializes it (copy)

4. Spark does stuff, then sends the results
back, serializing and deserializing it again.

Example Case:
Apache Spark Python

Application

Passing Arrow
Data Between

Python and
Spark

JVM
Spark doing

things

Python
Py4J Java
Gateway

JVM
Gateway

Server

Using Arrow, no need to copy the data!

1. Read 4GB CSV into Arrow Record Batches

2. Py4J Java Gateway can send as Arrow IPC

3. JVM Gateway receives Arrow IPC

4. Spark does stuff, then sends the results
back using Arrow IPC

What use cases benefit from Apache Arrow?
Why use Arrow vs other data formats?

12

Data Formats

Final size of the data representation

Performance for converting data between
the format and something that can be
used in-memory for computation

Catch-all category: readability,
compatibility, features, etc…

Size

Serialize /
Deserialize
Speed

Ease of Use

Let’s (Over-)Simplify!

13

Yes, these are extremely broad. That’s intentional!

Long-Term or Persistent
Storage

Runtime In-Memory
Processing

Message Passing

Data Format Categories

JSON
JSON

14

Data Format Categories
Relationships

Storage Format Message Passing Format

On Disk / In Cloud

Chunks of Data
(Rows and/or Columns)

I/O

In-Memory

Network
I/O or
IPC

Other Process

Message
Data

Decompress
/ Deserialize

Perform
Operations

In-Memory Runtime
Format

15

Example: Memory Mapping for Efficiency

Let’s read one column from a dataset with millions of rows

We can measure runtime and memory usage to read the column and create a
pandas Data Frame

1.8 GB CSV file

pandas.read_csv

1.8 GB CSV file

pyarrow.csv.read_csv

286 MB Parquet file

pyarrow.parquet

21 3 4 1.77 GB Arrow IPC file

mmap with pyarrow

16

Read 1 column

Using different formats and
methods

17

To Summarize!

Apache Arrow

Data Transport

Arrow supports complex types!

Arrow IPC format is fast and efficient

Flight / FlightSQL RPC

Streaming Data

Why should you use Arrow?

Tabular Analytics
Columnar representation leads to
fast computations!
Takes advantage of Vectorization

Includes Acero an Arrow-native
compute engine

Offers C Data API for interoperability

Q/A

