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Traditional data pipelines are largely chained by batch 
jobs reading from data lake
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Overall latency is hours to days
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Sink

Flink Streaming Job

Flink streaming from Kafka is very popular



Switch everything to Flink streaming from Kafka
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Kafka can achieve 

sub-second read latency



But there are tradeoffs . . .



Operation is not easy

• Upgrading stateful system is painful

• Capacity planning

• Bursty workload and isolation

• Managed Kafka service in cloud can be more expensive



It is very expensive to store long-term data in Kafka

Steven Wu & Sundaram Ananthanarayanan. Backfilling from Flink pipelines at frac. cost using Iceberg.
Apache Flink Meetup Hosted by Netflix. Jan 20, 2021

38x



Here comes tiered storage
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Sink

Backfill Job

Backfill jobs read data from Iceberg long-term storage

Live Job

Sink



Cross-AZ network cost can be much higher than 
compute and storage cost for brokers
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producer-1 producer-2 producer-3

>10x



Kafka source doesn’t support filtering or projection at 
broker side
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Set up routing jobs just to filter or project data
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Kafka source statically assigns partitions during 
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Other workers can’t pick up the slack from outlier
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Source parallelism is limited by the number of partitions
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May be difficult to get balanced partition assignment 
during autoscaling
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May be difficult to get balanced partition assignment 
during autoscaling
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Alternative streaming source?
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Sink

Can Flink stream data from Iceberg as they are 
appended to the table by upstream?

Upstream Streaming Job

Source

Iceberg Streaming Source Job



Sink

Iceberg Streaming Source Job

Iceberg supports scan of incremental changes 
between snapshots

Upstream Streaming Job

Sn

Source

f1, f2, f3

Sn+1

f1, f2, f3

TableScan appendsBetween(

long fromSnapshotId, long toSnapshotId);

This cycle continues forever



Many streaming use cases are 

good with minute-level latency



Build low-latency data pipelines chained by Flink jobs 
streaming from Iceberg
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Where does stream processing fit in the spectrum of 
data processing applications

Stephan Ewen & Xiaowei Jiang & Robert Metzger. From Stream Processing to Unified Data Processing System. 


Flink Forward. April 1-2, 2019. San Francisco
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Flink Iceberg streaming source fits well for data 
pipelines and continuous processing

more real timemore lag time
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Stephan Ewen & Xiaowei Jiang & Robert Metzger. From Stream Processing to Unified Data Processing System. 


Flink Forward. April 1-2, 2019. San Francisco



What about incremental batch processing

• Schedule batch runs every a few minutes

• Each run discovers and processes incremental data files

• The line becomes blurry as scheduling intervals are shortened



Limitations of incremental batch processing

• May be more expensive to tear down and start the batch runs 

when scheduling intervals are small

• Operational burden can be too high 

• Intermediate results for stateful processing are lost after each run 

and recomputed in the next run



Implement a Flink Iceberg source based 

on the FLIP-27 source interface from Flink

https://github.com/apache/iceberg/projects/23



Flink FLIP-27 source interface separates work 
discovery with reading

JobManager TaskManager-1
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A unit of work is defined as split

• In Kafka source, a split is a partition

• In Iceberg source, a split is a file, a slice of a large file, or a group of 
small files

• A split can be unbounded (Kafka)  or bounded (Iceberg)



Iceberg source dynamically assign splits to readers 
with pull based model
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…

1. Split 
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2. Discovered splits
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3. Request split 

upon start or done 
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4. Assigned split
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Iceberg



FLIP-27 unifies batch and streaming sources

Only difference 

is whether split 

discovery is 

one-time or 

periodical
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Benefits of Iceberg streaming source?



Offload operational burden to cloud blob storage

• Managed service

• Scalable

• Cost effective



Simplify the architecture with unified storage
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Sink

Backfill Job

Unify the live and backfill sources to Iceberg

Live Job

Sink



Cloud storage doesn’t  charge network cost within a 

AZ-1 AZ-2 AZ-3

consumer-1 consumer-2 consumer-3

Iceberg (on cloud storage)

Region



Support advanced data pruning

• File pruning (predicate pushdown)

• Column projection



Dynamic pull-based split assignment allows other 
worker to pick up the slack
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It is more operationally friendly

• Have a lot more file segments than the number of Kafka partitions

• Can support higher parallelism

• Is more autoscaling friendly
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Iceberg streaming 

source job
Kafka 

Source job

Test pipeline setup



Iceberg 

source job
Kafka 

Source job

Commit after checkpoint

• 1-10 minutes are pretty common

• Committing too often (like 1s) can overwhelm 

Iceberg with too many metadata files

• Committing too infrequent (like 1 hour) can lead to 

delay and bursty consumption for the downstream 

Test pipeline setup



Iceberg 

source job
Kafka 

Source job

Periodically discover files appended 

between last enumerated snapshot X 

and current table snapshot Y

Test pipeline setup



Traffic volume

• Throughput: ~3.9K msgs/sec

• Message size: ~1 KB



Container resource dimensions

• JobManager: 1 CPU, 4 GB memory

• TaskManager: 1 CPU, 4 GB memory



What are we evaluating

• Processing delay 

• How upstream commit interval affects the bursty consumption 

• CPU util comparison btw Kafka and Iceberg source



Measure the latency from Kafka to Iceberg source

processing time - event timestamp
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source job
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sub-second Commit interval Poll interval

Latency is mostly decided by commit and poll interval

Iceberg 

source job
Kafka 

source job



Latency histogram is within expected range for 10s 
commit and 5s poll interval

Max < 40s

Median fluctuates around 10s



Transactional commit in upstream ingestion leads 
to bursty stop-and-go consumption as expected
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CPU usage becomes smoother as we shorten the 

upstream commit interval and Iceberg source poll interval
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How does Iceberg source compare to Kafka 
source in CPU cost

The only difference is the streaming source: Kafka vs Iceberg
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Source job

Iceberg streaming 

source job



Here is the CPU usage comparison btw Kafka and Iceberg 
source after applying the smooth function

~36%

~60%Kafka  

source job

Iceberg  
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60-minute graphing window

(60s commit and 

10s poll intervals)



Build low-latency data pipelines chained by Flink jobs 
streaming from Iceberg
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