
Streaming from Iceberg Data Lake

Steven Wu | Apple

THIS IS NOT A CONTRIBUTION

Traditional data pipelines are largely chained by batch
jobs reading from data lake

Hours/Days

Feature

Engineering

Batch

Jobs

Data Lake

(Feature store)

Hours/Days

Model

Store

Offline Model

Training

Batch

Jobs

Minutes

Streaming

Ingestion

Data Lake

(Raw data)

Hours/Days

Batch

Jobs

ETL Data Lake
(Cleaned and
enriched data)

Device

Seconds

API

Edge Message

Queue

Overall latency is hours to days

Hours/Days

Feature

Engineering

Batch

Jobs

Data Lake

(Feature store)

Hours/Days

Model

Store

Offline Model

Training

Batch

Jobs

Minutes

Streaming

Ingestion

Data Lake

(Raw data)

Hours/Days

Batch

Jobs

ETL Data Lake
(Cleaned and
enriched data)

Device

Seconds

API

Edge Message

Queue

Sink

Flink Streaming Job

Flink streaming from Kafka is very popular

Switch everything to Flink streaming from Kafka

Feature

Engineering
Feature store

Model

Store

Online Model

Training

Streaming

Ingestion
Raw data

ETL Cleaned and
enriched data

Device

Seconds

API

Edge Message

Queue

Seconds Seconds

SecondsSeconds

Kafka can achieve

sub-second read latency

But there are tradeoffs . . .

Operation is not easy

• Upgrading stateful system is painful

• Capacity planning

• Bursty workload and isolation

• Managed Kafka service in cloud can be more expensive

It is very expensive to store long-term data in Kafka

Steven Wu & Sundaram Ananthanarayanan. Backfilling from Flink pipelines at frac. cost using Iceberg.
Apache Flink Meetup Hosted by Netflix. Jan 20, 2021

38x

Here comes tiered storage

Present
Recent
Past

Distant
Past

KafkaIceberg

Sink

Backfill Job

Backfill jobs read data from Iceberg long-term storage

Live Job

Sink

Cross-AZ network cost can be much higher than
compute and storage cost for brokers

AZ-1 AZ-2 AZ-3

broker-2broker-1 broker-3

consumer-1 consumer-2 consumer-3

producer-1 producer-2 producer-3

>10x

Kafka source doesn’t support filtering or projection at
broker side

Job-1

Job-2

Job-3

Filter

Filter

Projection

Set up routing jobs just to filter or project data

Job-1

Job-2

Job-3

Routing
Job

Filter

Filter

Projection

Kafka source statically assigns partitions during

Worker-1

Worker-2

Worker-3

Partition-1

Partition-2

Partition-3

Other workers can’t pick up the slack from outlier

Worker-1

Worker-2

Worker-3

Partition-1

Partition-2

Partition-3

Outlier

Source parallelism is limited by the number of partitions

Worker-1

Worker-2

Worker-3

Partition-1

Partition-2

Partition-3

Worker-4 Idle

May be difficult to get balanced partition assignment
during autoscaling

Worker-1

Worker-2

Worker-3

Partition-1

Partition-3

Partition-5

Partition-2

Partition-4

Partition-6

May be difficult to get balanced partition assignment
during autoscaling

Worker-1

Worker-2

Worker-3

Partition-1

Partition-3

Partition-5

Worker-4

Partition-2

Partition-4

Partition-6

Alternative streaming source?

Agenda

Motivation

Streaming from Iceberg

Evaluation results

Sink

Can Flink stream data from Iceberg as they are
appended to the table by upstream?

Upstream Streaming Job

Source

Iceberg Streaming Source Job

Sink

Iceberg Streaming Source Job

Iceberg supports scan of incremental changes
between snapshots

Upstream Streaming Job

Sn

Source

f1, f2, f3

Sn+1

f1, f2, f3

TableScan appendsBetween(

long fromSnapshotId, long toSnapshotId);

This cycle continues forever

Many streaming use cases are

good with minute-level latency

Build low-latency data pipelines chained by Flink jobs
streaming from Iceberg

Feature

Engineering

Data Lake

(Feature store)

Model

Store

Nearline

Model Training

Minutes

Streaming

Ingestion

Data Lake

(Raw data)

ETL Data Lake
(Cleaned and
enriched data)

Device

Seconds

API

Edge Message

Queue

Minutes

MinutesMinutes

Where does stream processing fit in the spectrum of
data processing applications

Stephan Ewen & Xiaowei Jiang & Robert Metzger. From Stream Processing to Unified Data Processing System.

Flink Forward. April 1-2, 2019. San Francisco

more real timemore lag time

Transactional

Processing

Event-driven

Applications

Streaming

Analytics

Data

Pipelines

Continuous

Processing

Batch

Processing

Flink Iceberg streaming source fits well for data
pipelines and continuous processing

more real timemore lag time

Transactional

Processing

Event-driven

Applications

Streaming

Analytics

Data

Pipelines

Continuous

Processing

Batch

Processing

minutes

Stephan Ewen & Xiaowei Jiang & Robert Metzger. From Stream Processing to Unified Data Processing System.

Flink Forward. April 1-2, 2019. San Francisco

What about incremental batch processing

• Schedule batch runs every a few minutes

• Each run discovers and processes incremental data files

• The line becomes blurry as scheduling intervals are shortened

Limitations of incremental batch processing

• May be more expensive to tear down and start the batch runs

when scheduling intervals are small

• Operational burden can be too high

• Intermediate results for stateful processing are lost after each run

and recomputed in the next run

Implement a Flink Iceberg source based

on the FLIP-27 source interface from Flink

https://github.com/apache/iceberg/projects/23

Flink FLIP-27 source interface separates work
discovery with reading

JobManager TaskManager-1

TaskManager-n

…

Enumerator

Reader-1

Reader-k

…

A unit of work is defined as split

• In Kafka source, a split is a partition

• In Iceberg source, a split is a file, a slice of a large file, or a group of
small files

• A split can be unbounded (Kafka) or bounded (Iceberg)

Iceberg source dynamically assign splits to readers
with pull based model

JobManager TaskManager-1

TaskManager-n

…

Enumerator

Reader-1

Reader-k

…

1. Split

planning
2. Discovered splits

Pending splits

3. Request split

upon start or done

with current split

4. Assigned split

Reader requests

one split a time

Iceberg

FLIP-27 unifies batch and streaming sources

Only difference

is whether split

discovery is

one-time or

periodical

JobManager TaskManager-1

TaskManager-n

…

Enumerator

Reader-1

Reader-k

…

1. Split

planning
2. Discovered splits

Pending splits

Iceberg

Benefits of Iceberg streaming source?

Offload operational burden to cloud blob storage

• Managed service

• Scalable

• Cost effective

Simplify the architecture with unified storage

Present
Recent
Past

Distant
Past

Iceberg

Sink

Backfill Job

Unify the live and backfill sources to Iceberg

Live Job

Sink

Cloud storage doesn’t charge network cost within a

AZ-1 AZ-2 AZ-3

consumer-1 consumer-2 consumer-3

Iceberg (on cloud storage)

Region

Support advanced data pruning

• File pruning (predicate pushdown)

• Column projection

Dynamic pull-based split assignment allows other
worker to pick up the slack

JobManager TaskManager-1

TaskManager-n

…

Enumerator

Reader-1

Reader-k

…

1. Split

planning

2. Discovered splits

matching filters

Pending splits

3. Request split

upon start or done

with current split

4. Assigned split

Outlier

Other workers can

pick up the slack

Iceberg

It is more operationally friendly

• Have a lot more file segments than the number of Kafka partitions

• Can support higher parallelism

• Is more autoscaling friendly

Agenda

Motivation

Streaming from Iceberg

Evaluation results

Iceberg streaming

source job
Kafka

Source job

Test pipeline setup

Iceberg

source job
Kafka

Source job

Commit after checkpoint

• 1-10 minutes are pretty common

• Committing too often (like 1s) can overwhelm

Iceberg with too many metadata files

• Committing too infrequent (like 1 hour) can lead to

delay and bursty consumption for the downstream

Test pipeline setup

Iceberg

source job
Kafka

Source job

Periodically discover files appended

between last enumerated snapshot X

and current table snapshot Y

Test pipeline setup

Traffic volume

• Throughput: ~3.9K msgs/sec

• Message size: ~1 KB

Container resource dimensions

• JobManager: 1 CPU, 4 GB memory

• TaskManager: 1 CPU, 4 GB memory

What are we evaluating

• Processing delay

• How upstream commit interval affects the bursty consumption

• CPU util comparison btw Kafka and Iceberg source

Measure the latency from Kafka to Iceberg source

processing time - event timestamp

Iceberg

source job
Kafka

source job

sub-second Commit interval Poll interval

Latency is mostly decided by commit and poll interval

Iceberg

source job
Kafka

source job

Latency histogram is within expected range for 10s
commit and 5s poll interval

Max < 40s

Median fluctuates around 10s

Transactional commit in upstream ingestion leads
to bursty stop-and-go consumption as expected

Kafka

Source job

Iceberg

source job 300s commit

and 30s poll

interval

30-minute graphing window

CPU usage becomes smoother as we shorten the

upstream commit interval and Iceberg source poll interval

30-minute graphing window

10s commit

and 5s poll

interval

300s commit

and 30s poll

interval

60s commit

and 10s poll

interval

How does Iceberg source compare to Kafka
source in CPU cost

The only difference is the streaming source: Kafka vs Iceberg

Kafka

Source job

Iceberg streaming

source job

Here is the CPU usage comparison btw Kafka and Iceberg
source after applying the smooth function

~36%

~60%Kafka

source job

Iceberg

source job

60-minute graphing window

(60s commit and

10s poll intervals)

Build low-latency data pipelines chained by Flink jobs
streaming from Iceberg

Feature

Engineering

Data Lake

(Feature store)

Model

Store

Nearline

Model Training

Minutes

Streaming

Ingestion

Data Lake

(Raw data)

ETL Data Lake
(Cleaned and
enriched data)

Device

Seconds

API

Edge Message

Queue

Minutes

MinutesMinutes

