
Confidential - Do Not Share

Scaling Up Apache Airflow To
Enterprise Level

Martijn Beenker - Data Engineer @ Avanade

1. Quick introduction to containers, k8s and Apache Airflow

2. Why should you care about designing for scale?

3. What went wrong?

a. Bye bye database: designing for auto-scaling

b. Overcrowding: database concurrency

c. No more room at the inn: designing your network carefully

d. Don’t look back: update your default app settings

e. Do you copy?: enhancing user proficiency

4. Q & A

Agenda

 Confidential | 2

 Confidential | 3

Sync Watches on Containers, Kubernetes & Airflow

 Confidential | 4

Sync Watches on Containers, Kubernetes & Airflow

 Confidential | 5

Sync Watches on Containers, Kubernetes & Airflow

 Confidential | 6

Why Should You Care About Designing For Scale?

When growing in # users,
Apache Airflow will start to

behave differently over time. If
you stay unprepared, your
system will experience

unavailability or performance
degradation.

With a big user base you
downtime becomes

expensive. Downtime affects
many downstream systems

(reports, analysis etc) and results
in high numbers of idle

engineers.

Bye Bye Database
(Failure 1)

In-Cluster DB
Hosting your db backend
as pod in the cluster Node 1

Node 2

pod db

pod pod

 Confidential | 8

K8s cluster

pressure

In-Cluster DB

Node 1

Node 2

pod db

pod pod

 Confidential | 9

K8s cluster

Node 3 pod pressure

High node utilization will
lead to the provisioning of
more nodes.

In-Cluster DB

Node 1

Node 2

pod db

pod pod

 Confidential | 10

K8s cluster

Node 3 pod

Node 4 db

Problem: Database
unavailability because of
workload redistribution.

In-Cluster DB

Node 1

Node 2

pod

pod pod

 Confidential | 11

K8s cluster

Node 3 pod

Node 4 db

Answer: Don’t auto-scale
your database node pool.

● Create different node
pools. Host worker pods
on a node pool that
auto-scales. Host the db
pod on a non-scalable
node pool.

● Monitor your un-scalable
node pools.

● Think about the VM SKU
used for each node pool.
Our db used a 32 core
instance which on a cpu
optimized SKU.

Auto scale

Don’t scale

Taint the node, add
toleration and node
affinity on the db pod

Overcrowding The Database
(Failure 2)

PaaS Database

Node 1

Node 2

pod

pod pod

 Confidential | 13

K8s cluster

Node 3 pod

Node 4

Problem: In-Cluster DB
required to much
maintenance

Answer: PaaS DB

● Significantly less
maintenance

● Better performance
● Easier to monitor
● Releases are no longer

affected by helm chart
update

-
db

32 cores
1500 concurrent conns
1495 concurrent users

PaaS Database

Node 1

Node 2

pod

pod pod

 Confidential | 14

K8s cluster

Node 3 pod

Node 4

Problem: We ran out of
concurrent connections

Answer: Connection Pooling

● Default is turned off
● Takes some tinkering, but

pays off

Additional Advice

● Don’t wait with
implementing your
connection pooler.

● Azure PostgreSQL Flexible
Server includes PgBouncer

32 cores
1500 concurrent conns
1495 concurrent usersERROR

Pg bouncer

No More Room In The Network
(Failure 3)

Network
Design

Node 1

Node 2

pod

pod pod

 Confidential | 16

K8s cluster

Node 3 pod

Node 4

Problem: We ran out of
available subnet space

- It’s not just your
scheduler, triggerer,
statsd, web server
and worker pods

pod

Subnet ips

Network
Design

Node 1

Node 2

pod

pod pod

 Confidential | 17

K8s cluster

Node 3 pod

Node 4

- It’s not just your
scheduler, triggerer,
statsd, webserver
and worker pods

- It’s also your VM
instances

pod

Subnet ips

Network
Design

Node 1

Node 2

pod

pod pod

 Confidential | 18

K8s cluster

Node 3 pod

Node 4

- It’s not just your
scheduler, triggerer,
statsd, webserver
and worker pods

- It’s also your VM
instances

- And the pods in
kube-system
namespace

pod

Subnet ips

pod pod

pod

pod pod

Network
Design

Node 1

Node 2

pod

pod pod

 Confidential | 19

K8s cluster

Node 3 pod

Node 4

Problem: No available
space == no new (worker)
pods

pod

Subnet ips

pod pod

pod

pod pod

Node 5 pod Can’t be scheduled

 Confidential | 20

Azure CNI
(Allow for at
least 200.000
hosts)

Kubenet
(smaller subnet
+ NAT)

VM nodes

NATNAT NAT

Pods get ips
that are unique

to the node

Network
Design
Answer: use large
networks or use Kubenet

● Either plan for a very big
subnet with Azure CNI

● Or design a network that
leverages Kubenet

● Trade-off is scalability vs
CPU overhead for NAT

User Proficiency & Trust
(Failure 4)

 Confidential | 22

Support Your Community

Community

Let the local community mature
and learn to take care of itself.
Have an internal Stack Overflow

ready. Monitor and do not
tolerate flaming.

Support

Deliver real-time support.
Especially to your early-adapters.

Incidents

Separate incidents from
support. Have a ticket system

ready.

Communicate clearly and early
on any incident to gain trust from

your user community.

Don’t Review Application Settings
(Failure 5)

Application
Settings
Problem: application
settings can cause
underutilization of the
platform’s resources

Answer: keep updating
your settings

● Have an environment
where you can simulate
production workloads

● Experiment with settings
here

 Confidential | 24

Setting What does it control Default Try…

worker_pods_creation_batch_size Number of Kubernetes Worker Pod
creation calls per scheduler loop.

1 20

max_dagruns_to_create_per_loop Max number of DAGs to create
DagRuns for per scheduler loop.

20 50

max_dagruns_per_loop_to_schedule How many DagRuns should a
scheduler examine (and lock) when
scheduling and queuing tasks.

20 50

parallelism This defines the maximum number
of task instances that can run
concurrently in Airflow regardless of
scheduler count and worker count

32 128

1. Don’t auto-scale your database node/connection pooler
node

2. Database Capacity

a. Use a PaaS database to reduce toil on the dev team

b. Use a connection pooler, no matter the cluster’s size

3. Plan & design your network to accommodate 200.000
hosts

4. Plan & implement appropriate comms channels

5. Update the default application settings when scaling up

Recap

 Confidential | 25

Big Thank You To My Colleagues
Glenn
Tycho
Jaminu
Krijn
& all the other folks at Rabobank

 Confidential | 27

- Started as Business Intelligence & Data
Warehouse Developer.

- Passionate about DevOps practices, borrowing
them from the app dev realm, applying them to the
data realm

- Believes in automation to enable a more happy
work environment and work-life balance

- Likes building strong engineering teams.

Reach out on:

● nl.linkedin.com/in/martijnbeenker
● github.com/lowerkees

Martijn Beenker
Senior Data Engineer, Senior Data Platform
Engineer, Avanade

https://nl.linkedin.com/in/martijnbeenker
https://github.com/lowerkees

Thank You

