
Powering a Data Mesh with
Dynamic GraphQL Schema
Generation
Matthew Topol, Principal Software Architect
Steve Perkins, Lead Software Engineer
Content Engineering

March 2 - 3, 2022 – Subsurface LIVE Winter 2022

Copyright © 2022 FactSet Research Systems Inc. All rights reserved.

Public

Agenda
• Why would you need this? (What were we trying to solve?)

• What about Federation?

• The Tech We’re Using

• Flexibility Through Metadata

• Benefits of Dynamic Schema Generation

• Future Optimizations and Tooling

• Q&A

2Copyright © 2022 FactSet Research Systems Inc. All rights reserved. Confidential: Do not forward.

Public

Why would you need this?

3Copyright © 2022 FactSet Research Systems Inc. All rights reserved. Confidential: Do not forward.

Multiple Different Data Stores
The data that we need to expose is stored
in multiple different technologies
(postgres, MSSQL, parquet) and can not
currently be migrated to something
consistent.

Consistent New Data Points
The data points that product developers

want to expose is continuously expanding.
Onboarding new data points needs to be

quick and painless.

Non-Standard Schemas
The schemas for the various data stores
are non-consistent. To ease data fetches
for consumers, these should be
standardized.

Multiple Internal Consumers
Not only do different internal consumers exist

for this data, but their query patterns also vary.
Fetching the data needs to be straightforward

and not require large changes on the consumer
side. Data also needs to be consistent across

all consumers

Public

Additional Considerations

• Abstraction from data source
– Hide the data mesh complexity

• Data consistency and timeliness
• Cross dataset queries
• Performance
– Query performance
– Data transfer performance

4Copyright © 2022 FactSet Research Systems Inc. All rights reserved. Confidential: Do not forward.

Public

Why didn’t we create a Federated GraphQL Service? (It’s all the rage right now)

• A Federated Schema != A Standard Schema
• Maintaining multiple different services amongst various teams proved

difficult over time
• Ensuring conformance updates were implemented across multiple

services was not reliable
• Single-entry-point infrastructure allows us to streamline automation,

improve development time, and quality assurance
– Easier to enforce conformance to standards

• Push joins down to query engine
– More performant

5Copyright © 2022 FactSet Research Systems Inc. All rights reserved. Confidential: Do not forward.

Public

Primary Tech We’re Using

6Copyright © 2022 FactSet Research Systems Inc. All rights reserved. Confidential: Do not forward. 6

Dremio
Our source agnostic query engine.

Dremio allows us to pull in data from
multiple different data stores and fetch

data in a performant manner

GraphQL
Our flexible schema interface. GraphQL

allows us to have a deterministic
schema that makes fetching data
straightforward and extendable.

Apache Arrow
Our communication format. In

conjunction with Arrow Flight RPC, this
communication protocol bolsters
round trip performance with zero

serialization/deserialization

Public

High Level Architecture

7Copyright © 2022 FactSet Research Systems Inc. All rights reserved. Confidential: Do not forward.

Public

Additional Technologies We’re Using

• Programming language
– Golang

• Communication framework
– Arrow Flight RPC over gRPC

• Cluster Deployment
– Kubernetes

• Golang Libraries
– graphql-go-tools - github.com/jensneuse/graphql-go-tools
– Apache Arrow - github.com/apache/arrow/go/v7/arrow

8Copyright © 2022 FactSet Research Systems Inc. All rights reserved. Confidential: Do not forward.

Public

Flexibility through Metadata

• Currently our metadata is driven by a fairly simple YAML configuration
– Split into Entities and Data Items

• Multiple levels of automated schema validation to ensure expectations are met
– Metadata schema defined using JSON Schema which can be applied to YAML

• Metadata can be owned and manipulated by content teams to provide a self-service API
– Faster time-to-market for exposing new data!

• Schema generation is flexible enough to ignore unrecognized attributes until they are leveraged

• Deterministic schema generation leads to easily deterministic Query Generation!

9Copyright © 2022 FactSet Research Systems Inc. All rights reserved. Confidential: Do not forward.

Metadata Drives All

Public

Metadata Example

10Copyright © 2022 FactSet Research Systems Inc. All rights reserved. Confidential: Do not forward.

Entity Data Item

Public

Meshing Around With Different Schemas

11Copyright © 2022 FactSet Research Systems Inc. All rights reserved. Confidential: Do not forward.

Public

Produced GraphQL Schema:

12Copyright © 2022 FactSet Research Systems Inc. All rights reserved. Confidential: Do not forward.

Public

One Query Pattern To Rule Them All

13Copyright © 2022 FactSet Research Systems Inc. All rights reserved. Confidential: Do not forward.

Public

Benefits of Dynamic Schema Generation

• Faster time to market for new data points

• Ease of automated extension
– Define relationships in metadata for easy one-to-many / many-to-many query generation

• Data source abstraction
– Consumers write GraphQL, not SQL

• Reduced engineering effort necessary for maintenance

• Consistent query patterns allow for templated query generation

14Copyright © 2022 FactSet Research Systems Inc. All rights reserved. Confidential: Do not forward.

Public

The Query Template
SELECT <display_columns>
FROM <display_table> AS t1

LEFT JOIN (

 SELECT <dimension_1_display_columns>

 FROM <dimension_1_display_table>

 WHERE <dimension_1_display_filters>) AS t2 ON <dimension_1_join_fields>

LEFT JOIN (…)AS t2 ON <dimension_n_join_fields>

WHERE <display_key> IN (

 SELECT

 DISTINCT <display_key>

 FROM <filter_table> AS t1

 WHERE

 <filter_criteria> AND

 <display_key> IN (

 SELECT DISTINCT <display_key> FROM <dimension_table_1> AS t1 WHERE <dimension_1_filter_criteria>) AND

 <display_key> IN (…))

 ORDER BY LOWER(<display_key>) ASC

 LIMIT 1000

15Copyright © 2022 FactSet Research Systems Inc. All rights reserved. Confidential: Do not forward.

Public

The Query

SELECT "bank_entity_id", "ticker", "bank_name", "bank_sub_type_description“,…

FROM bus.banks.banks_entity_display AS t1

LEFT JOIN (…) AS t2 ON (t1."bank_entity_id" = t2."entity_id")

LEFT JOIN (…) AS t3 ON (t1."bank_entity_id" = t3."entity_id")

WHERE t1."bank_entity_id" IN (

 SELECT

 DISTINCT t1."bank_entity_id"

 FROM bus.banks.banks_entity_display AS t1

 WHERE

 ((t1."bank_sub_type" = '0|1' OR t1."bank_type" = '0' OR t1."bank_type" = '1') AND t1."bank_entity_id" IN (

 SELECT DISTINCT "entity_id" FROM bus.banks.bank_financials_loans_leases AS t1 WHERE

 (t1."venture_capital_revenue" >= 10 AND period_type = 'A' AND fiscal_period = 20211231)

)

 AND t1."status_code" IN ('Active','Extinct'))) ORDER BY LOWER("bank_entity_id") ASC LIMIT 1000

16Copyright © 2022 FactSet Research Systems Inc. All rights reserved. Confidential: Do not forward.

Public

Dynamic Schemas -> Deterministic Queries

17Copyright © 2022 FactSet Research Systems Inc. All rights reserved. Confidential: Do not forward.

Super

Fast

Public

Future Optimizations and Tooling

• Improve self-service tooling for adding new metadata
– Web Platform for internal content teams to use

• More automated metadata generation from datasets

• Higher level GraphQL query planning for utilizing column-caches when available for
super-low-latency queries
– Provide query handling for subset of patterns which can’t be served with Dremio SQL

• Computational capabilities in addition to fetches worked into dynamic schema and query generation

18Copyright © 2022 FactSet Research Systems Inc. All rights reserved. Confidential: Do not forward.

Questions?

