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Building reactive notebooks for data
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Poll: how do code notebooks make you feel?
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A. I use notebooks for everything! Analysis, text editing, email… all 

notebooks!

B. They’re useful sometimes but they have their drawbacks.

C. I will literally quit my job if they make me use a notebook.

D. You mean, like… to write in?



Historical background: literate programming
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In 1984, Donald Knuth introduced the 

concept of "literate programming", a 

way of developing that mixes code, 

explanation, and outputs together in 

a way that's meant to be more 

interpretable by humans.



Fast forward to 2022
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Notebooks are the most widely-

used example of literate 

programming in practice.



Why notebooks?
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● Mix code and outputs together

● Great for iterating on smaller chunks of code; well-suited to 

exploration

● Linear, narrative layout that is great for storytelling



But notebooks have… issues
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The State Problem

a = 1

a = 2

print(a)

What does this print?



imperative programming
a programming paradigm that uses statements that change a 

program's state.
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Notebook state causes 3 major problems
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1. Interpretability

It’s hard to reason about what’s happening in a notebook, especially 

someone else’s.

1. Reproducibility

Out of order cells make it hard to reproduce work without frequent 

restart-and-run-alls.

1. Performance

Re-runs are wasteful and time-consuming… especially in Hex :(



Another barrier to entry
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This is exactly the kind of 

thing that scares people 

off from analytics and 

data science, and gives 

code a bad name.



The state of state
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Re-thinking state

13



reactive programming
a programming paradigm oriented around data flows and the 

propagation of change.
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In practice, this means that reactive objects maintain references 
to their dependencies and update automatically when their 

dependencies change.



Why reactive programming?
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- State consistency

- Performance

- Nice abstractions for async and concurrent data flows
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Imperative Reactive

>> a = 4
>> b = 10
>> c = a + b
>> c
14
>> a = 25
>> c
14

>> a = 4
>> b = 10
>> c = a + b
>> c
14
>> a = 25
>> c
35



17

Everyone’s favorite reactive programming tool



DAGs!
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a DAG in dbt



Bringing reactivity and DAGs to notebooks
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We introduced a fully-reactive, 

DAG-based execution model in 

Hex 2.0, which solves for all 3 

problems we discussed earlier:

- Interpretability

- Reproducibility

- Performance



Demo
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Under the hood: building 

the DAGs
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Graphs have Nodes and Edges:

- Nodes = Cells

- In edges: Variable references

- Out edges: Variable assignments

How do we determine relationships?
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Abstract Syntax Trees

a = 1
b = 2
c = a + b



Issues with this approach
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It’s not actually a DAG!

a = 1
b = a + 1

b = 1
a = b + 1

a = 1 a = 2

print(a)

The ordering is non-deterministic



Solution: use notebook ordering

28

a = 1
b = a + 1

a = 1
b = a + 1

a = 1

a = 2

print(a)



Pulling it all together: 

bringing DAGs into Hex 
notebooks
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Determining “staleness”
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In order to know which cells to recompute, we track a condition called 

staleness.

A cell is stale if:

- It hasn’t been run yet this kernel session

- An upstream cell has been edited and it hasn’t been re-run

- An upstream cell has been run and it hasn’t been re-run

- An upstream cell has become stale



Implementing Reactivity with iPython
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On each edit:

- Run each cell through an AST parser to compute inputs and outputs

- Re-compute the cell DAG

- Traverse graph upstream and downstream to determine list of cells 

needed to be run

- Upstream, filter out cells that are already “up to date”

- Downstream, mark as “stale”

- Queue all remaining stale cells in notebook order into the kernel

- Mark cell as “up to date” after successful run



DAG usability cleanup
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Future exploration
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Future exploration
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- Lambdas / better isolation

- Cell caching

- Performance & parallelism
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Design Lead

Melissa Carlson

Engineering Lead

Glen Takahashi

Chief Architect



Questions?
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