Beyond Linearity

Building reactive notebooks for data

Caitlin Colgrove, CTO @ Hex

Poll: how do code notebooks make you feel?

A. | use notebooks for everything! Analysis, text editing, email... all

notebooks!
B. They’re useful sometimes but they have their drawbacks.

C. | will literally quit my job if they make me use a notebook.

D. You mean, like... to write in?

Historical background: literate programming

In 1984, Donald Knuth introduced the
concept of "literate programming", a
way of developing that mixes code,
explanation, and outputs together in
a way that's meant to be more

interpretable by humans.

@ Here is a Perl program that simply
prints out |Hello, world!| the rmmber of
times specified in the first arcqument.

< <*r=

! /usy /bin/perl
<<Checkirgs=>
<<PrintHillorld->

@ Printing involwves a simple loop. Line
breaks are added for clarity.

<<PrintHilorld=>==

for ($i = 0; $i < FARGUV[O]; $i+4) {
print "Hello, worldlyn";

}

@ We ‘emph{mast} nake sure, however,
that an arcqument was specified.

<<Ch,eckkxgsb->=
if (RARGY != 1) {

die "No arcnment specified";
}

(a) Literate source.

| oo |

*
[(oc]
PrintHivworld

T

Checkivgs |

F 3

Linear fwoven] sbucture

#*

PR

Checkirgs PrintHivworld

Hierarchical (code} séruckre

(b) Linear and hierarchical
views

Fast forward to 2022

bifurcation.nb *

File Edit Insert Format Cell Graphics Evaluation Palettes Window Help

Notebooks are the most widely- - ORISR

o KO_s k_4 W (True &)] := NestWhileList[r, a0, while, 2, kO4 k~-1) // Drop[z=, k0] &
logistic = (r, y) += r y (1=y);

T

v Row @ ("Initial value:
used example of literate i oman
Row @ ("Time ¢t

*, a0 = RandomReal[(0.1, 0.9}]}
+ ", density = 10’}
1 k: ", k0=10%}

+ ", Timing [

. . . plotData -an;qllel’!‘.ble[(Cons:m[lrrny[:, density], bifurcate[logistic([r, =] &, a0, k0, density]}’,
programming in practice. A T P

A hello.ipynb []
B+ X O M » m ¢ » XDownload & &) GitHub & Binder Code v Python 3 O

import pandas as pd

print("Hello world!")

Hello world!

Published Feb 17

JS lists and arrays

md # 1S lists and arrays

mylist = » Array(5) ["tekst", "b", "car", 4, 12.5]

Why notebooks?

® Mix code and outputs together

® Great for iterating on smaller chunks of code; well-suited to

exploration

® Linear, narrative layout that is great for storytelling

But notebooks have... issues

I DON'T LIKE NOTEBOOKS
G

\“‘ .

Joel Grus (@joelgrus) & #JupyterCon 2018

The State Problem

print(a)

What does this print?

imperative programming
a programming paradigm that uses statements that change a
program's state.

Notebook state causes 3 major problems

1. Interpretability

It’s hard to reason about what’s happening in a notebook, especially

someone else’s.
1. Reproducibility

Out of order cells make it hard to reproduce work without frequent

restart-and-run-alls.
1. Performance

Re-runs are wasteful and time-consuming... especially in Hex :(

Another barrier to entry

This is exactly the kind of
thing that scares people

off from analytics and

data science, and gives

code a bad name.

10

The state of state

IIA'I'A‘IIEI'AIITMEH'I'"“

BRI DS

/IIAVE‘YIIII 'I'IIIEII IIES'I'AII'I'IIIG
- AND IIIIHHIIIGI’IIIIM SI}IIA'I'GII —

12

Re-thinking state

reactive programming

a programming paradigm oriented around data flows and the
propagation of change.

In practice, this means that reactive objects maintain references
to their dependencies and update automatically when their

dependencies change.

14

Why reactive programming?

- State consistency
- Performance

- Nice abstractions for async and concurrent data flows

15

Imperative

Reactive

16

HOME INSERT PAGE LAYOUT FORMULAS DATA REVIEW VIEW KUTOOLS ENTERPRISE

Jx

z lE B Im I! Q G=] Define Name ~ %20 Trace Precedents

. : - £l Use in Formula ~ ol# Trace Dependents
Insert AutoSum Recently Financial Logical Text Date & Lookup & Math& More Name
Function v Used ~ v v ~ Time~ Reference~ Trig~ Functions~ Manager (5 Create from Selection 3% Remove Arrows ~
Function Library Defined Names Forn
ES vl ¢ Je =1:1048576
A B & D ‘ E J F G H | J
1 P
2 | —2%
3 4om
4 | ———45
5 50 24— 108)
6
7 &~ 100 230 456
8 0.9
9 L.111111
10| 1¥1.11111 ' 659.04

Everyone’s favorite reactive programming tool

17

DAGS!

(B oo e

. fivetran_github.team_ bership } . base__github_team_memberships

. fivetran_github.team }

fct_github_commits
. fct_github_pull_requests]

. stg_github__team_memberships

a DAG in dbt

18

Bringing reactivity and DAGs to notebooks

We introduced a fully-reactive,
DAG-based execution model in
Hex 2.0, which solves for all 3

problems we discussed earlier:

nnnnnnnnnnnnn

- Interpretability e - 3

- Reproducibility

- Performance

U

i e
: . .A_’;mﬁ"ﬂ

19

~

=HEX

51 B &

ﬂuazs

s== Flights Demo - Reactivity X

& app.hex.tech/hex/hex/95df1ec1-67c¢3-423b-8f8f-b41153b48cce/draft/logic

Flights Demo - Reactivity v

<+ Add cell

O Production || Demo Internal

<> Logic U App

Flights Demo - Reactivity

This forecast takes in historic flight volumes, and generates a prediction going forward some number of

months into the future.

import pandas as pd

from fbprophet import Prophet

import matplotlib.pyplot as plt

import seaborn as sns
import numpy as np

pd Prophet 1 plt sns np

source |} Demo Database -

select =
from flight_data

Preview Display
airline
Delta
Delta
Delta
Delta

w N e

0 Browse

Sk rows - 0 seconds
departure_airport
DIA
DIA
DIA
DIA

892.54 KB
month
2668-01-01
2008-02-01
2008-03-01
2008-64-01

v

h % i Q(Update {)

n: o CEmEm e

Run mode Auto v D Runall v A~ % Graph

CACHE Disabled £

© View compiled

passengexs
434.0
475.0
531.0
509.0

select *
from flight_data

Under the hood: building
the DAGs |

Graphs have Nodes and Edges: p——

80,000 M oL

» JAX

& 60,000 W K

Z "airline" 3 ORL

airlines = df|(Line"].unique(i 40,000 B POX

airports = df ["departure_airport SFO

- Nodes = Cells oo I 532
A

airlines airports o el
2010 2020
month

- In edges: Variable references

- Out edges: Variable assignments

How do we determine relationships?

JAX v United v

23

Abstract Syntax Trees Module
body

\ 4

Assign Assign Assign
targets targets targets
value value value

AW /

Name Constant Name Constant Name BinOp
id=a value=1 id=a value=1 id=c
left

op
right

y

Name Name
id=c Add id=b

26

Issues with this approach

It’s not actually a DAG! The ordering is non-deterministic

a 1
b a + 1

| I

4

27

Solution: use notebook ordering

28

Pulling it all together:

bringing DAGs into Hex
notebooks

Determining “staleness”

In order to know which cells to recompute, we track a condition called

staleness.
A cell is stale if:

It hasn’t been run yet this kernel session

An upstream cell has been edited and it hasn’t been re-run

An upstream cell has been run and it hasn’t been re-run

An upstream cell has become stale

30

Implementing Reactivity with iPython

On each edit:

- Run each cell through an AST parser to compute inputs and outputs
- Re-compute the cell DAG
- Traverse graph upstream and downstream to determine list of cells
needed to be run
- Upstream, filter out cells that are already “up to date”
- Downstream, mark as “stale”
- Queue all remaining stale cells in notebook order into the kernel

- Mark cell as “up to date” after successful run 31

DAG usability cleanup

Code 0

1 import pandas as pd
from fbprophet import Prophet
import matplotlib.pyplot as plt
import seaborn as sns
sns.set()

pd Prophet 1 plt 1 sns

Markdown 1

008 -

Flight Traffic Forecast

Flight Traffic Forecast

Code 13

~
~

future_dates

my_model.make_fu

forecast = my_model.predict(fut

forecast_values

round(forecas

future_dates

/
Code 16 " ~
forecast
forecast_values
ds yhat yhat_lower yhat_upper

0 2008- 387.17 23261 546.39
01-01

Table 15

forecast_values

forecast_values

tds

2008-01-01T00:...
2008-02-017T00:...
2008-03-01T00:...
2008-04-01T00:...

2008-05-01T00:...

yhat

32

Future exploration

Future exploration

- Lambdas / better isolation
- Cell caching

- Performance & parallelism

34

Adam Storr Melissa Carlson
Design Lead o Engineering Lead

Glen Takahashi
Chief Architect

