
1

Beyond Linearity
Building reactive notebooks for data

Caitlin Colgrove, CTO @ Hex



Poll: how do code notebooks make you feel?

2

A. I use notebooks for everything! Analysis, text editing, email… all 

notebooks!

B. They’re useful sometimes but they have their drawbacks.

C. I will literally quit my job if they make me use a notebook.

D. You mean, like… to write in?



Historical background: literate programming

3

In 1984, Donald Knuth introduced the 

concept of "literate programming", a 

way of developing that mixes code, 

explanation, and outputs together in 

a way that's meant to be more 

interpretable by humans.



Fast forward to 2022

4

Notebooks are the most widely-

used example of literate 

programming in practice.



Why notebooks?

5

● Mix code and outputs together

● Great for iterating on smaller chunks of code; well-suited to 

exploration

● Linear, narrative layout that is great for storytelling



But notebooks have… issues

6



7

The State Problem

a = 1

a = 2

print(a)

What does this print?



imperative programming
a programming paradigm that uses statements that change a 

program's state.

8



Notebook state causes 3 major problems

9

1. Interpretability

It’s hard to reason about what’s happening in a notebook, especially 

someone else’s.

1. Reproducibility

Out of order cells make it hard to reproduce work without frequent 

restart-and-run-alls.

1. Performance

Re-runs are wasteful and time-consuming… especially in Hex :(



Another barrier to entry

10

This is exactly the kind of 

thing that scares people 

off from analytics and 

data science, and gives 

code a bad name.



The state of state

11



12



Re-thinking state

13



reactive programming
a programming paradigm oriented around data flows and the 

propagation of change.

14

In practice, this means that reactive objects maintain references 
to their dependencies and update automatically when their 

dependencies change.



Why reactive programming?

15

- State consistency

- Performance

- Nice abstractions for async and concurrent data flows



16

Imperative Reactive

>> a = 4
>> b = 10
>> c = a + b
>> c
14
>> a = 25
>> c
14

>> a = 4
>> b = 10
>> c = a + b
>> c
14
>> a = 25
>> c
35



17

Everyone’s favorite reactive programming tool



DAGs!

18

a DAG in dbt



Bringing reactivity and DAGs to notebooks

19

We introduced a fully-reactive, 

DAG-based execution model in 

Hex 2.0, which solves for all 3 

problems we discussed earlier:

- Interpretability

- Reproducibility

- Performance



Demo

20



21



Under the hood: building 

the DAGs

23

Graphs have Nodes and Edges:

- Nodes = Cells

- In edges: Variable references

- Out edges: Variable assignments

How do we determine relationships?



26

Module

body

Assign

value

Assign

Constant

value=1

BinOp

left

Name

id=a

Add

Name

id=b

op
right

targets

Assign

value

Constant

value=1

Name

id=a

targets

Name

id=c

value

targets

Name

id=c

Abstract Syntax Trees

a = 1
b = 2
c = a + b



Issues with this approach

27

It’s not actually a DAG!

a = 1
b = a + 1

b = 1
a = b + 1

a = 1 a = 2

print(a)

The ordering is non-deterministic



Solution: use notebook ordering

28

a = 1
b = a + 1

a = 1
b = a + 1

a = 1

a = 2

print(a)



Pulling it all together: 

bringing DAGs into Hex 
notebooks

29



Determining “staleness”

30

In order to know which cells to recompute, we track a condition called 

staleness.

A cell is stale if:

- It hasn’t been run yet this kernel session

- An upstream cell has been edited and it hasn’t been re-run

- An upstream cell has been run and it hasn’t been re-run

- An upstream cell has become stale



Implementing Reactivity with iPython

31

On each edit:

- Run each cell through an AST parser to compute inputs and outputs

- Re-compute the cell DAG

- Traverse graph upstream and downstream to determine list of cells 

needed to be run

- Upstream, filter out cells that are already “up to date”

- Downstream, mark as “stale”

- Queue all remaining stale cells in notebook order into the kernel

- Mark cell as “up to date” after successful run



DAG usability cleanup

32



Future exploration

33



Future exploration

34

- Lambdas / better isolation

- Cell caching

- Performance & parallelism



35

Adam Storr

Design Lead

Melissa Carlson

Engineering Lead

Glen Takahashi

Chief Architect



Questions?

36


