Arrow FlightSQL: A 20x Faster
Alternative to ODBC and JDBC

Presented by James Duong of Bit Quill Technologies

S"b‘cﬂ&

The Cloud Data
Lake Conference

, /{fm” 17>

Overview

e Introduction to Arrow Flight
e FlightSQL Enhancements for Arrow Flight
e JDBC Diriver for FlightSQL

Introduction to Apache Arrow

e A columnar, in-memory data format and supporting libraries.

e Supported on many languages including C++, Java, Python, Go

e Data is strongly typed. Each row has the same schema.

e Includes libraries for working with the format:
o Computation engine utilizing SIMD operations for vectorized data analysis.
o Interprocess communication.

o Serialization / deserialization from file formats.

e Fully open source with a permissive license.

Arrow Adoption

@dremio SEGK ucono NVIDIA ((
@ python” % AN § turbodbe

DASK |APD ’ Java, C, C++, Python, R, JavaScript,
R J JS

E Tioch #BLAZINGDB C#, Ruby, Rust, Go, ...

&.graphistry geomesa ® v G

«rise), H,0

o Quilt I=Ex gsciDhB

Apache Arrow Adoption

Apache Arrow Adoption

Daily Download Quantity of pyarrow package - Overall

30d 60d 90d 120d all

2,000,000 ~ ~ R o AR o
e AR s\R fFedl [é) ¢ |
4 S\ ¢
° d 0 ° (o}
o 0 Q
»n 1,500,000 (o) Q9 \ i 4 Qo
o o) Q o
® R o 0 6
o —e— With_Mirrors » _ feo d N o d =
e
§ 1.000,000 ©— Without_Mirrors © Q Ooob [} %
o = N o) &% 9 %
a [} % ¥ o} © 5%
500,000
0 | L 1 1 L L 1 L
,\f’) :-]/’W/ 2 o NS ,19 ,-.;\ » ,\Q ; A > Y 4 > N S < {\
SR AN AR AR, AP P S AP AP AR S A AP A A

>50M

Downloads
per month

Why is Arrow Flight needed?

e An open protocol that the community can support.

e Designed for data in the modern world
o Older protocols (ODBC/JDBC) are row oriented and geared towards large
numbers of columns and low numbers of rows.
o Arrow’s columnar format is oriented towards high compressibility and large
numbers of rows.

e Supports distributed computing as a client-side concept:
o A data request can return multiple endpoints to a client.
o The client can retrieve from each endpoint in parallel.

@)

directly.

Status Quo: Serializing/Deserializing data at each step

CLIENT JDBC/ODBC Connector

Column Based

Row Based

Arrow Way: Data is sent, transported and received in the Arrow format

Convert

Protocol for serialization-free transport of Arrow data

This is particularly efficient if the client application will just work with Arrow data

N
—

DATABASE
Column Based

&l/

<
—

CLIENT Arrow Flight Connector transporting data in Arrow Format

Column Based

] DATABASE

Column Based

)

Column Based

D

Distributed Computing: Single Node with Arrow Flight

CooreiEier 1 - GetFlightInfo(<query>)

Executor Client
2 - FlightInfo<Schema, Endpoints>
CPU CPU
memory memory
ARROWDDD 3 - DoGet(<ticket>) Arrow

Endpoint = {location, ticket}

Distributed Computing: Multiple Nodes with Arrow Flight

Do
Se "ficket_\)

DoGet(<ticket>)

Omitting GetFlightinfo call...

Client

CPU
memory

ARRuw>>>

Arrow Flight as a Development Framework

e Includes a fully-built client library

e Includes a high-performance, scalable server
o Built on top of Google’s gRPC technology and compatible with existing tooling.
o Server implementation details such as thread-pooling, asynchronous |10, request
cancellation are already implemented!

e Server deployment is a matter of implementing a few RPC request handlers.

Why extend Arrow Flight? It is generic by design

e Client sends a byte stream, server sends a result
o The content of the byte stream is opaqgue in the interface.
o It only has meaning for a particular server.
o Example — Dremio interprets the byte stream to be a UTF-8 encoded SQL query
string.

e Catalog information is not part of Arrow Flight’s design

o There is no RPC call to to describe how to build the byte stream the client sends.
o Generic tools cannot be built.

e Flight is meant to serve any tabular data, not databases in particular.
e ODBC and JDBC standardize query execution and catalog access.

e Enter FlightSQL

What is FlightSQL?

e Initiative to allow databases to use Arrow Flight as the transport protocol
o Leverage the performance of Arrow and Flight for database access.

e Extended set of RPC calls to standardize a SQL interface on Flight:
o Query execution
o Prepared statements
o Database catalog metadata (tables, columns, data types).
o SQL syntax capabilities

e Generic client libraries
o A FlightSQL client application can be used against any Flight SQL server without
code changes.

Common Tool Workflow

Listing tables
/GetTabIes 1 - GetFlightinfo(GetTables)

Client Server

2 - FlightInfo<Schema, Endpoints>

DoGet 3 - DoGet(<ticket>)

memory K‘ﬁRow>>>

. e CPU
CPU K - Arrow record batches / memory

Xﬁkow>>> f Execute 5 - GetFlightinfo(StatementExecute)

6 - Flightinfo<Schema, Endpoints>

DoGet 7 - DoGet(<ticket>)

o %

Retrieving query data

FlightSQL vs. JDBC

JDBC FlightSQL
e FEach database vendor must implement, e Single client that works against any FlightSQL
maintain, and distribute a driver. server.
e [Each database vendor must implement their e Server implementation is part of Flight. Only
entire server. RPC handlers need to be implemented.
e Implementation details may be closed source. e Flight and Arrow components are open and
the community is actively improving them.
e Protocol is proprietary.
e Protocol is open and integrates with gRPC
and Arrow tooling.

FlightSQL Status

e Initial version released with Arrow 7.0.0!
o Includes support for C++ and Java clients and servers

e Enhancements to column and data type metadata are under review
e Open for contributions:

o Support for additional languages (Python, Go, C#, etc.)
o More SQL features, such as transactions.

Why build a JDBC Driver?

e FlightSQL will take time to be adopted.
o Many Bl tools already support JDBC. This provides a fast way to allow for access
from these tools to FlightSQL servers.

e A driver proves that FlightSQL provides enough SQL functionality.
o The Arrow JDBC driver was built in parallel with the FlightSQL libraries and
protocol.
o Bl tools were tested against the Arrow driver, which in turn verifies if FlightSQL has
the capabilities required to support these tools.

e Note that it is still preferable to have native FlightSQL applications to better
harness new features such as multiple endpoints.

Arrow Flight SQL JDBC Driver

e A JDBC Driver built on top of FlightSqlClient libraries
o A single driver to connect to any FlightSQL server, regardless of how the server
was implemented.

o Supports arbitrary server-side options as connection properties.
o State is transmitted using HT TP cookies.
e Completely open source and to be released under the Apache license.

e [Functionally complete. A pull request is available under the Arrow project.

e The driver will work with any JDBC tool without code changes.

JDBC User Experience

e How does the user experience change with a single driver that works
against unlimited databases?

Before Arrow JDBC After Arrow JDBC
e User must download a driver for each e User can download the Arrow JDBC driver
database they want to work with. and work with any database supporting
FlightSQL.

e |n the case of Tableau, there are 90+
connectors!

Tableau Demo

Credits

e FlightSQL was built from contributions from:
o Bit Quill Technologies
o Dremio
o Symbiose Ventures
o Voltron Data

References

e Arrow Flight SQL Announcement:
hitps://arrow.apache.org/blog/2022/02/16/introducing-arrow-flight-sqgl/

e Arrow Flight SQL JDBC Driver PR:
https://github.com/apache/arrow/pull/12254

https://arrow.apache.org/blog/2022/02/16/introducing-arrow-flight-sql/
https://github.com/apache/arrow/pull/12254

Thank You!

