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Overview

e Introduction to Arrow Flight
e FlightSQL Enhancements for Arrow Flight
e JDBC Diriver for FlightSQL







Introduction to Apache Arrow

e A columnar, in-memory data format and supporting libraries.

e Supported on many languages including C++, Java, Python, Go

e Data is strongly typed. Each row has the same schema.

e Includes libraries for working with the format:
o Computation engine utilizing SIMD operations for vectorized data analysis.
o Interprocess communication.

o Serialization / deserialization from file formats.

e Fully open source with a permissive license.



Arrow Adoption
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Apache Arrow Adoption
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Why is Arrow Flight needed?

e An open protocol that the community can support.

e Designed for data in the modern world
o  Older protocols (ODBC/JDBC) are row oriented and geared towards large
numbers of columns and low numbers of rows.
o Arrow’s columnar format is oriented towards high compressibility and large
numbers of rows.

e Supports distributed computing as a client-side concept:
o A data request can return multiple endpoints to a client.
o The client can retrieve from each endpoint in parallel.
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Distributed Computing: Single Node with Arrow Flight
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Endpoint = {location, ticket}



Distributed Computing: Multiple Nodes with Arrow Flight
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Arrow Flight as a Development Framework

e Includes a fully-built client library

e Includes a high-performance, scalable server
o Built on top of Google’s gRPC technology and compatible with existing tooling.
o Server implementation details such as thread-pooling, asynchronous |10, request
cancellation are already implemented!

e Server deployment is a matter of implementing a few RPC request handlers.






Why extend Arrow Flight? It is generic by design

e Client sends a byte stream, server sends a result
o The content of the byte stream is opaqgue in the interface.
o It only has meaning for a particular server.
o Example — Dremio interprets the byte stream to be a UTF-8 encoded SQL query
string.

e Catalog information is not part of Arrow Flight’s design

o There is no RPC call to to describe how to build the byte stream the client sends.
o Generic tools cannot be built.

e Flight is meant to serve any tabular data, not databases in particular.
e ODBC and JDBC standardize query execution and catalog access.

e Enter FlightSQL



What is FlightSQL?

e Initiative to allow databases to use Arrow Flight as the transport protocol
o Leverage the performance of Arrow and Flight for database access.

e Extended set of RPC calls to standardize a SQL interface on Flight:
o Query execution
o Prepared statements
o Database catalog metadata (tables, columns, data types).
o SQL syntax capabilities

e Generic client libraries
o A FlightSQL client application can be used against any Flight SQL server without
code changes.



Common Tool Workflow
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FlightSQL vs. JDBC

JDBC FlightSQL
e FEach database vendor must implement, e Single client that works against any FlightSQL
maintain, and distribute a driver. server.
e [Each database vendor must implement their e Server implementation is part of Flight. Only
entire server. RPC handlers need to be implemented.
e Implementation details may be closed source. e Flight and Arrow components are open and
the community is actively improving them.
e Protocol is proprietary.
e Protocol is open and integrates with gRPC
and Arrow tooling.




FlightSQL Status

e Initial version released with Arrow 7.0.0!
o Includes support for C++ and Java clients and servers

e Enhancements to column and data type metadata are under review
e Open for contributions:

o Support for additional languages (Python, Go, C#, etc.)
o More SQL features, such as transactions.






Why build a JDBC Driver?

e FlightSQL will take time to be adopted.
o Many Bl tools already support JDBC. This provides a fast way to allow for access
from these tools to FlightSQL servers.

e A driver proves that FlightSQL provides enough SQL functionality.
o The Arrow JDBC driver was built in parallel with the FlightSQL libraries and
protocol.
o Bl tools were tested against the Arrow driver, which in turn verifies if FlightSQL has
the capabilities required to support these tools.

e Note that it is still preferable to have native FlightSQL applications to better
harness new features such as multiple endpoints.



Arrow Flight SQL JDBC Driver

e A JDBC Driver built on top of FlightSqlClient libraries
o A single driver to connect to any FlightSQL server, regardless of how the server
was implemented.

o Supports arbitrary server-side options as connection properties.
o State is transmitted using HT TP cookies.
e Completely open source and to be released under the Apache license.

e [Functionally complete. A pull request is available under the Arrow project.

e The driver will work with any JDBC tool without code changes.



JDBC User Experience

e How does the user experience change with a single driver that works
against unlimited databases?

Before Arrow JDBC After Arrow JDBC
e User must download a driver for each e User can download the Arrow JDBC driver
database they want to work with. and work with any database supporting
FlightSQL.

e |n the case of Tableau, there are 90+
connectors!




Tableau Demo




Credits

e FlightSQL was built from contributions from:
o Bit Quill Technologies
o Dremio
o Symbiose Ventures
o Voltron Data



References

e Arrow Flight SQL Announcement:
hitps://arrow.apache.org/blog/2022/02/16/introducing-arrow-flight-sqgl/

e Arrow Flight SQL JDBC Driver PR:
https://github.com/apache/arrow/pull/12254
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Thank You!




