

Apache Arrow: Open Source Standard Becomes Enterprise Necessity

March 3, 2022 Subsurface Live Winter 2022

Wes McKinney

About Me

- Apache Arrow co-creator, PMC member
- pandas creator
- Voltron Data co-founder, CTO
- Previously at Ursa Labs, Two Sigma, Cloudera, AQR
- Author of **Python for Data Analysis**

Apache Arrow

 $\mathbf{\nabla}^{\mathbf{7}}$

Multi-language toolbox for accelerated data interchange and in-memory processing

- Founded in **2016** by a group of open source developers
- Enables unification of **database** and **data science** tech stacks
- Thriving user and developer community
- Provides implementations or bindings in **twelve languages**
- Adopted by **numerous projects and products** in the ecosystem

Voltron Data

- Creating a **unified foundation** for the future of analytical computing with **Apache Arrow**
- Founded in **2021**

 $\mathbf{\nabla}^{\mathbf{7}}$

- Raised **\$110M** in seed and Series A funding
- Leading corporate **contributor to Arrow**

We're hiring! voltrondata.com/careers

What's New in Apache Arrow

Project and Ecosystem Growth

- Sustained growth in users, contributors, applications
- Arrow version 7.0.0 (24th major release) in February 2022

>50M monthly PyArrow downloads

2017

 $\mathbf{\nabla}^{\mathbf{7}}$

6

Arrow Flight SQL

 $\mathbf{v}^{\mathbf{r}}$

Next-generation standard for data access using SQL

- Adds SQL semantics to **Arrow Flight**
- Enables **ODBC/JDBC-style data access** at the speed of Flight
- Reduces implementation complexity for developers
- Shipped in Arrow version 7.0.0 (February 2020)
 - C++ and Java implementations available
 - Additional development and documentation is ongoing ²⁴

Arrow C++ Query Engine

Work is ongoing to implement comprehensive query execution capabilities in the Arrow C++ library

- Common scalar functions \checkmark
- Common grouped aggregate functions \checkmark
- Common joins 🗸

- Performance and efficiency improvements ¹/₁
- Window functions
- Additional join types ²⁰⁴

Substrait

 $\mathbf{\nabla}^{\mathbf{7}}$

A cross-language, interoperable specification for data compute operations

- A standard, flexible way for APIs and engines to share the representation of analytics computations
 - Produced by APIs (dplyr, lbis, SQL, ...)
 - Consumed by engines (Arrow C++ engine, DuckDB, ...)
- Work is underway to implement producers and consumers *m*

lbis

 $\mathbf{\nabla}^{\mathbf{7}}$

A high-level Python API for data analysis

- Fluent **pandas-like** syntax
- Can express virtually any SQL query
- Supports **modular backends** for querying systems including PostgreSQL, MySQL, SQLite, Impala, ClickHouse, BigQuery
- Work is underway to produce **Substrait** plans 🚧
 - Enabling Ibis queries to run on the **Arrow C++ engine**

Challenges that Enterprises Are Solving with Apache Arrow

11

Challenge: Obstacles to Interoperability

- Enterprise data tools and workflows often incorporate multiple languages, query engines, storage systems, and clouds.
- Arrow provides **standard formats, interfaces, and frameworks** to enable efficient integration of these diverse components.

 $\mathbf{\nabla}^{\mathbf{7}}$

12

Case Study: Microsoft

Microsoft uses Arrow in their Magpie data science middleware

- Unifies multiple cloud and database backends into a single end user interface
- Stores intermediate results as Arrow Tables
- Uses **Arrow Flight** to move data between systems

Case Study: Streamlit

Streamlit uses Arrow to move data from Python to JavaScript

- Reduces server–browser data transfer times
- Simplifies addition of new features to Streamlit
- Allowed deletion of >1000 lines of custom code

Source: https://blog.streamlit.io/all-in-on-apache-arrow/

Challenge: Slow Data Access Protocols

- Legacy data transport protocols are often slowed by serialization and deserialization overhead and other causes.
- The Arrow columnar data format and the Arrow Flight framework enable fast, serialization-free data transport.

Case Study: Snowflake

Snowflake uses Arrow in its JDBC client, Python client, and Spark connector

- Eliminates serialization between columnar and roworiented data formats
- Achieves 4 10x reduction in fetch times

 $\mathbf{\nabla}^{\mathbf{7}}$

400 300 200 100 0 3.9.x 3.11.0

Figure 1. JDBC fetch performance benchmark for JDBC client version 3.9.x (without Arrow) versus 3.11.0 (with Arrow)

Source: https://www.snowflake.com/blog/fetching-query-results-from-snowflake-just-got-a-lot-faster-with-apache-arrow/

Case Study: Google Cloud Platform

Google Cloud uses Arrow in its BigQuery Storage API

- Eliminates or speeds serialization to multiple data formats
- Achieves 4 31x reduction in download times
- Speedup is stable across data sizes

 $\mathbf{\nabla}^{\mathbf{7}}$

BigQuery to DataFrame

Source: https://medium.com/google-cloud/announcing-googlecloud-bigquery-version-1-17-0-1fc428512171

17

Challenge: Limits of JVM-Based Engines

- Computing engines implemented in JVM languages including Java and Scala often suffer from **performance bottlenecks**.
- Arrow columnar data structures can accelerate JVM-based engines and enable use of pluggable high-performance components implemented in lower-level languages like C++.

Case Study: KNIME

KNIME uses Arrow in its Columnar Table Backend

- Stores data more compactly in memory, improving performance
- Eliminates the need to create
 Java objects to represent table
 elements, reducing GC pressure
- Enables use of shared memory

 $\mathbf{\nabla}^{\mathbf{7}}$

Source: https://www.knime.com/blog/improvedperformance-with-new-table-backend

Case Study: Meta

 $\mathbf{\nabla}^{\mathbf{7}}$

Meta uses Arrow in its Velox C++ database acceleration library

- Improves the performance of **Spark** and **Presto** jobs
- Uses Arrow columnar memory layouts for most data types
- Enables SIMD vectorized expression evaluation

Source: https://github.com/facebookincubator/velox

Challenge: Embeddable Query Processing

- Enterprises want the flexibility to **embed in-memory analytical execution capabilities** directly in business applications.
- By integrating with Arrow, embeddable engines can achieve excellent **performance**, **efficiency**, and **developer experience**.

Case Study: DataFusion

Arrow DataFusion is extensible query execution framework

- Implemented as an embeddable Rust library
- Supports **distributed execution** through **Ballista**
- Uses Arrow as its native in-memory format
- Supports SQL and a DataFrame API
- Donated to the Apache Arrow project

 $\mathbf{\nabla}^{\mathbf{7}}$

Source: https://arrow.apache.org/datafusion

Case Study: DuckDB

 $\mathbf{\nabla}^{\mathbf{7}}$

DuckDB is an in-process SQL OLAP database system

- Implemented as an **embeddable C++ library**
- Offers **zero-copy integration** with Arrow
- Can **push down filters and projections** into Arrow scans
- Interoperates with the Arrow **Python and R APIs**

Source: https://duckdb.org/2021/12/03/duck-arrow.html

How Voltron Data Supports Enterprise Applications of Apache Arrow

Enterprise Subscription for Arrow

- A focused set of services designed to **accelerate business success** with Apache Arrow
 - Professional support
 Content and events
 - Deployment assistance

- Private consultations
- Offered in three editions starting with free
- Available now (March 2022)

 $\mathbf{\nabla}^{\mathbf{7}}$

Learn more and sign up at voltrondata.com/subscription

Thank you

Sign up: voltrondata.com/subscription

