
Dremio Architecture Guide
Architecting for Performance and Cost Efficiency

http://www.dremio.com

2 dremio.com

W H Y D R E M I O . 3

D R E M I O C O R E T E C H N O LO G I E S . 5

Apache Arrow, Arrow Flight and Gandiva .. 5

Apache Parquet .. 5

A D R E M I O I N S TA N C E . 6

Instance Node Types.. 6

Q U E R Y A C C E L E R AT I O N . 7

The Life of a Query ... 8

Query Execution Phases .. 9

Query Push-Downs ... 10

Data Reflections ... 10

Managing Data Reflections .. 12

Refreshing Data Reflections .. 13

External Data Reflections.. 13

Using Data Reflections to Accelerate Queries ... 14

Offloading Operational Databases ... 14

S E L F - S E R V I C E S E M A N T I C L AY E R . 1 5

Security and Data Governance ... 16

Data Provenance & Lineage .. 16

Authentication ... 16

Access Control ... 17

Auditing ... 17

Encryption.. 17

http://www.dremio.com

3 dremio.com

Why Dremio

The data lake market is experiencing rapid growth. More data is getting stored

in data lake cloud storage such as AWS S3 and Microsoft ADLS. By their nature,

data lakes differ from data warehouses in that they do not require a rigorous

schema for data to be defined before loading data, which makes it easier for

organizations to collect raw data from many systems for analysis. However, with

data lake adoption comes challenges; traditional SQL engines like Presto and

Athena are too slow to query data directly from data lakes for most analytical

use cases outside of some edge ad-hoc queries, so most organizations prefer

to use a combination of data warehouses, extracts, cubes and ETL to make the

data from data lake storage more usable and accessible for analytical queries.

However, when data warehouse systems scale in usage, the cost of ownership

gets incredibly expensive. Additionally, there’s a certain amount of vendor lock-

in because data warehousing solutions are proprietary systems.

This layering-on of data warehouses and associated technologies and processes

creates a complex and costly infrastructure for data analytics, as seen in Figure 1

above. This is unfortunate, because cloud-based data lake storage is inexpensive,

easy to provision and scale, and usually already has an attached ecosystem of

tools and solutions. In many organizations, it’s also the first place where data

lands after it’s generated by operational systems. If data lake storage could be

queried directly in a performant way, a lot of the additional solutions that are

put in place to get around these performance problems could be simplified or

removed altogether.

Figure 1 - Data movement leads to high cost, increased complexity and relinquished control

http://www.dremio.com

4 dremio.com

Figure 2 - Dremio Data Lake Engine

As seen in Figure 2 above, Dremio’s Data Lake Engine provides that performance,

together with a self-service semantic layer that makes it easy for even non-

technical users to access and analyze data. It does this in a way that maintains the

flexibility that’s inherent in data lake storage; you don’t have to copy and move

your data to a third party or put it in a proprietary format. Dremio provides:

Lightning-fast queries directly on data lake storage. Dremio technologies

like Data Reflections, Columnar Cloud Cache (C3) and Predictive Pipelining

work alongside Apache Arrow powered by Gandiva to execute queries

directly on data lake storage at interactive speed. These query acceleration

technologies combine to deliver 4-100x faster performance compared to

traditional data lake engines like Presto.

A self-service semantic layer. This abstraction layer enables data engineers

to apply security and business meaning while enabling analysts and data

scientists to explore data and derive new virtual datasets.

Flexibility and openness. Dremio lets you avoid vendor lock-in, query data

directly across clouds or on-prem, and keep your data in storage that you

own and control. In this way, you maximize your flexibility and freedom to

use your data as you see fit.

Deep infrastructure cost savings. Dremio combines query acceleration and

highly elastic compute resources to provide significant performance and cost

benefits. For example, a 4x average increase in speed results in a 75% or more

infrastructure cost reduction vs. Presto at the same level of performance.

http://www.dremio.com

5 dremio.com

Dremio Core Technologies

Dremio, at its core, utilizes high-performance columnar storage and execution,

powered by Apache Arrow (columnar in-memory) with Gandiva (LLVM-based

execution kernel), Apache Arrow Flight (high-speed distributed protocol) and

Apache Parquet (columnar on-disk). Dremio has deep knowledge and experience

with high-performance analytics and is the co-creator and current maintainer of

Apache Arrow, Gandiva and Arrow Flight projects.

A PA C H E A R R O W, A R R O W F L I G H T A N D G A N D I VA

Apache Arrow is an open source project that enables columnar in-memory data

processing and interchange. It also leverages the execution kernel Gandiva to

compile queries to a vectorized code optimized for modern CPUs. Dremio was

part of the founding team behind Arrow, which now includes committers from

various organizations including IBM, Cloudera, Databricks, Hortonworks, Intel,

MapR, and Two Sigma.

Dremio is the first data lake engine built from the ground up on Apache Arrow.

Internally, the data in memory is maintained off-heap in the Arrow format, and

Arrow Flight introduced an RPC API that returns query results as Arrow memory

buffers.

A variety of other projects have embraced Arrow as well. Python (Pandas) and R

are among these projects, enabling data scientists to work more efficiently with

data. For example, Wes McKinney, creator of the popular Pandas library, recently

demonstrated how Arrow enables Python users to read data into Pandas at over

10 GB/s.

A PA C H E PA R Q U E T

Apache Parquet is an open source project that enables columnar data storage. It

has emerged in recent years as the most common columnar format in the Hadoop

and AWS ecosystems. Unlike Apache Arrow, which is optimized for in-memory

storage and efficient processing in the CPU, Parquet is optimized for on-disk

storage. For example, it utilizes encoding and compression schemes, such as

dictionary and run-length encoding, to minimize overall footprint and storage I/O.

Dremio includes an ultra high-performance, vectorized Parquet reader that

reads Parquet-formatted data from disk into Arrow-formatted data in memory.

The Parquet reader enables fast processing of raw data as well as Data

Reflections. It includes state-of-the-art capabilities such as:

Intelligent predicate push-downs and page pruning

In-place operations without decompressing data

Vectorized processing

Zero memory copies

http://www.dremio.com
https://www.dremio.com/apache-arrow-explained/
https://docs.dremio.com/advanced-administration/gandiva.html
https://www.dremio.com/understanding-apache-arrow-flight/
https://wesmckinney.com/blog/high-perf-arrow-to-pandas/

6 dremio.com

A Dremio Instance

Dremio features an elastic scale-out architecture. It is designed to scale from

one to thousands of nodes in a single instance. Common deployment patterns

include:

Hosted Kubernetes environment:

• Amazon Elastic Container Service for Kubernetes (Amazon EKS)

• Azure Kubernetes Service (AKS)

Hosted environment through provisioning templates:

• AWS Cloud Formation template

• Azure Resource Management template

Shared multi-tenant environment:

• Hadoop using YARN

• MapR using YARN

Standalone on-premises instance

I N S T A N C E N ODE T Y P E S

There are two distinct node types in a Dremio instance, and the services

property determines whether the node is enabled with the master-coordinator

or engine role. Each node type can be scaled independently; see Figure 3 below

for the Dremio deployment architecture and Figure 4 for the Dremio functional

architecture. The two node types are:

• Coordinators. These nodes are responsible for coordinating query planning,

managing metadata, serving Dremio’s UI and handling client connections. Client

applications, such as BI or data science tools, connect to and communicate with

coordinators. Coordinators are highly available and can be scaled up to process

more concurrent clients. Note that all Dremio instance nodes with Dremio

coordinator services must have the master-coordinator role enabled. A node

with only the coordinator role enabled is not supported.

• Engines. These nodes are responsible for query execution. Client applications do

not connect to engines. Engines can be scaled up to process large data volumes

and more concurrent queries. Because engines are stateless, deployments can

treat these nodes as elastic resources and scale the system dynamically.

Learn more about how high availability works in the Dremio instance here.

http://www.dremio.com
https://docs.dremio.com/deployment/architecture.html
https://docs.dremio.com/deployment/deployment-models.html
https://docs.dremio.com/deployment/node-roles.html
https://docs.dremio.com/advanced-administration/high-availability.html

7 dremio.com

Query Acceleration

There are two general types of analytical queries: ad-hoc and dashboard/

reporting. Dremio’s Data Lake Engine has multiple acceleration technologies,

allowing it to execute those queries extremely fast and efficiently. Ad-hoc queries

are dynamic and interactive by nature and require on-demand direct access to

the source data. Dremio’s Arrow-based engine powered by Gandiva, C3 and

predictive pipelining deliver ad-hoc query results up to 4x faster than traditional

SQL engines(see Figure 5). Dashboarding/reporting queries are well-defined and

usually are getting executed against curated datasets. For these queries, Dremio

offers additional acceleration technologies such as Data Reflections to make

these queries up to 100x faster compared to traditional SQL engines.

Figure 3 - Dremio deployment architecture

Figure 4 - Dremio functional architecture

http://www.dremio.com

8 dremio.com

T H E L I F E O F A Q U E R Y

Client applications can issue queries to Dremio over ODBC, JDBC or REST. A

query might involve one or more datasets, mostly residing in data lake storage

but potentially in optional, relatively small external data sources. Dremio utilizes

the following primary techniques to reduce the amount of processing required

for a query:

Direct data lake storage queries. The optimizer uses Apache Arrow

to read data directly from data lake storage into the Arrow buffer with

massively parallel readers and predictive pipelining at high speed and

extreme concurrency. Also, the optimizer interrogates C3 to fetch

automatically cached data, achieving NVMe-level performance.

Push-downs into optional external data sources. The optimizer considesr

the capabilities of the underlying external data source and the relative

costs. It then generates a plan that performs stages of the query, either in

the external source or in Dremio’s distributed execution environment, to

achieve the most efficient overall plan possible.

Optional acceleration via Data Reflections. The optimizer uses Data

Reflections, a highly optimized physical representation of source data,

if available for all or portions of the query when this produces the most

efficient overall plan. In many cases, the entire query can be serviced from

Data Reflections.

Figure 5 - Dremio query acceleration

http://www.dremio.com

9 dremio.com

Q U E R Y E X E C U T I O N P H A S E S

The life of a query includes the following phases (see Figure 6 for sequence diagram):

1. Client submits query to coordinator via ODBC/JDBC/REST

2. Planning:

a. Coordinator parses the query into Dremio’s universal relational model.

b. Coordinator considers available statistics on data sources to develop query

execution plan, as well as functional abilities of the source.

c. Coordinator rewrites query plan to use (1) any available Data Reflections,

considering ordering, partitioning and distribution of the Data Reflections; and (2)

the available capabilities of the data source.

3. Execution:

a. Engines read data into Arrow buffers from sources in parallel. The data typically

come directly from data lake storage-based data sources. In some cases, they

come from Data Reflections (Parquet files) also stored in data lake storage, or

external data source(s). When reading from an external source, the engine submits

the native queries (e.g., Elasticsearch Painless Script, Microsoft Transact-SQL) as

determined by the optimizer in the planning phase.

b. Engines execute the rewritten query plan.

c. One engine merges the results from one or more engines and streams the final

results to the coordinator.

4. Client receives the results from the coordinator.

Note that all data operations are performed on the engine node, enabling the system

to scale to many concurrent clients using only a few coordinator nodes.

Figure 6 - Query execution phases

http://www.dremio.com

10 dremio.com

Q U E R Y P U S H - D O W N S

Although most data sources reside in data lake storage, where necessary,

Dremio can push down processing into external relational and non-relational

data sources. Non-relational data sources typically do not support SQL and have

limited execution capabilities. A file system, for example, cannot apply

predicates or aggregations. The Dremio optimizer understands the capabilities of

each data source. When it is most efficient, Dremio pushes as much of a query to

the underlying source as possible and perform the rest in its own distributed

execution engine.

D ATA R E F L E C T I O N S

Dremio accelerates queries by utilizing highly-optimized physical

representations of source data called Data Reflections. The Data Reflection

Store can live on cloud storage such as Amazon S3, Azure ADLS, HDFS or

direct-attached storage (DAS). The Data Reflection Store size can exceed that of

physical memory. This architecture enables Dremio to accelerate more data at

a lower cost, resulting in a much higher cache hit ratio compared to traditional

memory-only architectures. Data Reflections are automatically utilized by

Dremio’s cost-based optimizer at query time.

Note that Data Reflections are invisible to end users. Unlike OLAP cubes,

aggregation tables and BI extracts, the user does not explicitly connect to a

Data Reflection. Instead, users connect to virtual data sets (i.e., views of data)

in Dremio’s semantic layer, and issue queries against Dremio’s logical model.

Dremio’s query optimizer automatically accelerates the query by taking

advantage of Data Reflections that are suitable for the query based on the

optimizer’s dependency graph and cost analysis.

By default, Dremio utilizes its high-performance distributed execution engine,

leveraging columnar in-memory processing (via Apache Arrow) and advanced

push-downs into the underlying data sources where available (see Figure 7).

Figure 7 - Default query execution path

http://www.dremio.com
https://docs.dremio.com/acceleration/

11 dremio.com

In some cases where the entire query can be satisfied by Data Reflections

without consulting the data source, the plan is rewritten by the optimizer to

utilize the Data Reflections (see Figure 8).

There are, of course, situations where the optimal plan includes a combination of

data from the data source and one or more Data Reflections (see Figure 9).

Figure 8 - Query execution with Data Reflection acceleration

Figure 9 - Query execution with a partial Data Reflection acceleration

http://www.dremio.com

12 dremio.com

A Data Reflection is represented as a logical plan and the corresponding

physical materialization. The logical plan may be based on one or more physical

datasets (e.g., S3 bucket, log file, log directory, Hive table, Oracle table). From

a management standpoint, a Data Reflection is anchored to a single physical

or virtual dataset, although at query time it can accelerate queries on other

datasets as well.

The physical materialization of a Data Reflection is based on Apache Parquet,

with a variety of surrounding optimizations such as column-level statistics. Data

Reflections can be sorted, partitioned, aggregated and distributed by specific

columns.

To understand how Data Reflections work, we must answer the following

independent questions:

1. How are Data Reflections managed? How are they created and refreshed?

2. How are Data Reflections used to accelerate queries?

3. How are Data Reflections physically stored and optimized?

Managing Data Reflections

From a management standpoint, Data Reflections are always anchored to a

specific physical or virtual dataset in the system. While SQL queries on dataset

X are often accelerated via Data Reflections anchored to dataset X, the

optimizer is free to use any other Data Reflection to accelerate such queries. In

addition, Data Reflections anchored to dataset X may be used by the optimizer

to accelerate queries on dataset Y.

There are two types of Data Reflections:

Raw Reflections: a projection of one or more columns of the anchor dataset.

The data can be sorted, partitioned and distributed by different columns of

the anchor dataset

Aggregation Reflections: an aggregation on one or more columns of the

anchor dataset. The Data Reflection is defined by dimensions and measures

and contains aggregate-level data for each of the measures such as count,

sum, min and max. The data can be sorted, partitioned and distributed by

different columns of the anchor dataset.

There may be unique circumstances in which it is desirable to create a custom

Data Reflection, which is similar to a materialized view in a relational database.

In such cases, simply create a new virtual dataset with the SQL query that

defines the desired materialization, and create a single raw Reflection that

includes all columns in the virtual dataset.

http://www.dremio.com

13 dremio.com

Refreshing Data Reflections

Dremio automatically refreshes Data Reflections to ensure data freshness.

There are three refresh methods:

Full refresh. This method is most suitable for mutating datasets.

Incremental refresh for file-based sources. This method is most suitable for

large, append-only datasets that are represented as a collection of files (e.g.,

S3). The system automatically identifies new files in the directory.

Incremental refresh for table-based sources. This method is most suitable for

large, append-only data sets represented as tables or collections (e.g., Oracle,

Elasticsearch, MongoDB). A monotonically increasing column, such as a

created_at timestamp or sequential primary key is required.

Internally, Dremio maintains a dependency graph (DAG) that defines the

order in which Data Reflections are refreshed. The dependencies are

calculated based on relational algebra, and the actual refresh start time takes

into account the expected amount of time required to complete the entire

refresh cycle.

Note that this graph-based approach reduces the end-to-end cycle time, as

well as the compute resources required to complete the cycle. In addition, by

leveraging one Data Reflection to refresh another Data Reflection, the system

can avoid resource-intensive reads on operational databases more than once.

External Data Reflections

For unique cases, Dremio supports the notion of External Data Reflections.

Users can create and maintain Data Reflections using an external process such

as Apache Spark, then register the External Data Reflection in Dremio. Dremio

considers these Data Reflections in its cost-based analysis to accelerate

queries. Any data source that Dremio supports can be used for External Data

Reflections.

External Data Reflections are useful in cases where it makes sense to manage

the creation outside of the Dremio process (e.g., processing that runs for many

hours or days, or when existing processes are already in place that create

optimized representations of data for specific query patterns). The advantage

of registering these resources in Dremio is that it simplifies the experience for

data consumers, and provides additional capabilities for securing and governing

access to the data, as well as tracking data lineage.

http://www.dremio.com

14 dremio.com

Using Data Reflections to Accelerate Queries

Dremio includes a cost-based optimizer that not only plans and optimizes

queries but also explores opportunities to utilize Data Reflections to reduce the

query cost (i.e., accelerate the query). When a new query arrives, the optimizer

considers all Data Reflections and automatically rewrites the query plan to

utilize Data Reflections when possible (see Figure 10). The optimizer utilizes a

two-phase algorithm:

1. Data Reflection pruning. The optimizer disregards Data Reflections that are

irrelevant because their logical plans have no physical datasets in common with

the query’s logical plan.

2. Subgraph matching. The optimizer uses an innovative hierarchical graph

algorithm to match sub-graphs of the query’s logical plan with the logical plans of

Data Reflections.

Offloading Operational Databases

Most operational databases are designed for write-optimized workloads.

Furthermore, these deployments must address stringent SLAs, and any

downtime or degraded performance can significantly impact the business. As a

result, operational systems are frequently isolated from processing analytical

queries. In these cases, Dremio can execute analytical queries using Data

Reflections, which provide the most efficient query processing possible while

minimizing the impact on the operational system.

Figure 10 - Subgraph matching

http://www.dremio.com

15 dremio.com

Self-Service Semantic Layer

Dremio establishes views into data (called virtual datasets) in a semantic layer

on top of your physical data (see Figure 11), so data analysts and engineers can

manage, curate and share data while maintaining governance and security—but

without the overhead and complexity of copying data. Connect any BI or data

science tool, including Tableau, Power BI, Looker and Jupyter Notebooks, to

Dremio and start exploring and mining your data lake for value.

Dremio’s semantic layer is fully virtual, indexed and searchable, and the

relationships between your data sources, virtual datasets and transformations

and all your queries are maintained in Dremio’s data graph, so you know exactly

where each virtual dataset came from. Role-based access control makes sure

that everyone has access to exactly what they need (and nothing else), and SSO

enables a seamless authentication experience.

Figure 11 - Dremio semantic layer architecture

http://www.dremio.com

16 dremio.com

S E C U R I T Y A N D D ATA G O V E R N A N C E

Security and data governance are critical to any enterprise. However, the

increasing complexity and demand for data often lead to data sprawl, resulting in

significant risk. Dremio, the self-service semantic layer, enables business analysts

and data scientists to discover, curate, accelerate and share data without having

to export copies of the data into ungoverned systems, including disconnected

spreadsheets, ungoverned BI servers and private databases. This reduces the

risk of unauthorized data access as well as data theft.

Dremio provides a variety of security and governance capabilities, including:

Row & column access control on any source

Data masking

Data provenance and data lineage

Authentication based on LDAP/AD

Role-based access control

Auditing

Encryption

D ATA P R O V E N A N C E & L I N E A G E

Dremio’s Data Graph shows the provenance and lineage of every dataset in the

system, including those in a user’s personal space. IT can easily understand how

a dataset was created, transformed, joined and shared, as well as the full lineage

of these steps between datasets. This information is captured and tracked by

Dremio automatically.

A U T H E N T I C AT I O N

Dremio supports the following authentication modes:

Local - Dremio manages users internally.

LDAP - Dremio connects to an existing LDAP-based directory service such

as Active Directory. Dremio relies on the directory service for verifying

credentials and checking group membership.

Azure AD - Dremio authenticates users through Azure Active Directory

Single Sign On (SSO).

OpenID - Dremio authenticates users through third-party identity providers

using OpenID protocol.

http://www.dremio.com
https://docs.dremio.com/security/authentication.html

17 dremio.com

A C C E S S C O N T R O L

Dremio supports fine-grained access control:

Physical dataset permissions control which users and/or groups can query a

specific physical dataset (e.g., HDFS directory, Hive table, Elasticsearch type).

Virtual dataset permissions control which users and/or groups can query a

specific virtual dataset.

Column-level permissions can be used to restrict access to sensitive columns

in a dataset for specific users.

Row-level permissions can be used to restrict access to a subset of the

records in a dataset for specific users.

Masking of sensitive data is applied dynamically at query time based on

LDAP/ AD group membership and other user-defined rules.

Virtual datasets are the recommended mechanism for managing access to

data. A user who owns a specific dataset may create a derived virtual dataset,

including only a subset of the columns or records of the original dataset. The user

can then deny access to the original dataset while enabling access to the derived

virtual dataset.

A U D I T I N G

Dremio tracks and records user activity, including all query executions. It serves

as a single entry point that shows who’s accessing what data, when and how.

For example, the Jobs section of the UI provides details on all query history,

enabling IT to monitor the system for suspicious activity and identify cases of

unauthorized data access.

E N C R Y P T I O N

For encryption on the wire, Dremio leverages both TLS (SSL) and Kerberos.

When connecting to a secure Hadoop cluster, Dremio communicates securely

with the Hadoop services via Kerberos. For other data sources, Dremio supports

the standard wire-level encryption scheme of the source system. For encryption

at rest, Dremio leverages the encryption capabilities of the Data Reflection Store

(e.g., Amazon S3, Azure ADLS, Hadoop).

http://www.dremio.com

dremio.com

A B O U T D R E M I O C O R P O R AT I O N

Dremio’s Data Lake Engine delivers fast query speed and a self-service semantic layer operating

directly against data lake storage. Dremio eliminates the need to copy and move data to

proprietary data warehouses or create cubes, aggregation tables and BI extracts, providing

flexibility and control for Data Architects, and self-service for Data Consumers. For more

information, visit www.dremio.com.

Founded in 2015, Dremio is headquartered in Santa Clara, CA. Investors include Cisco

Investments, Lightspeed Venture Partners, Norwest Venture Partners and Redpoint Ventures.

Connect with Dremio on GitHub, LinkedIn, Twitter, and Facebook.

All third party brands, product names, logos or trademarks referenced are the property of and are used to

identify the products or services of their respective owners. © Copyright Dremio 2020. All Rights Reserved.

http://www.dremio.com
http://www.dremio.com

